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This article specifies how the setup, or introduction, of cognitively demanding tasks 
is a crucial phase of middle-grades mathematics instruction. We report on an empirical 
study of 165 middle-grades mathematics teachers’ instruction that focused on how 
they introduced tasks and the relationship between how they introduced tasks and the 
nature of students’ opportunities to learn mathematics in the concluding whole-class 
discussion. Findings suggest that in lessons in which (a) the setup supported students 
to develop common language to describe contextual features and mathematical rela-
tionships specific to the task and (b) the cognitive demand of the task was maintained 
in the setup, concluding whole-class discussions were characterized by higher quality 
opportunities to learn. 

Key words: Cognitive demand; Instruction; Opportunity to learn; Tasks

Over the past several decades, mathematics education researchers have achieved 
broad consensus regarding a set of goals for students’ mathematical learning, which 
are represented in documents like the National Council of Teachers of Mathematics’ 
Principles and Standards for School Mathematics (National Council of Teachers 
of Mathematics, 2000), the National Research Council’s Adding It Up: Helping 
Children Learn Mathematics (Kilpatrick, Swafford, & Findell, 2001), and the more 
recent Common Core State Standards for mathematics (National Governors 
Association Center for Best Practices & Council of Chief State School Officers, 
2010). These documents describe a concrete set of learning goals that encompass 
both conceptual understanding and procedural fluency in a range of mathematical 
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647Jackson, Garrison, Wilson, Gibbons, and Shahan

domains as well as the development of productive problem-solving capabilities 
and dispositions. 

At the same time, mathematics education researchers have worked to specify 
what should happen between teachers and students in classrooms in order to 
accomplish these goals for students’ learning (Franke, Kazemi, & Battey, 2007). 
For example, research suggests that in order to accomplish such learning goals, 
instruction should include frequent opportunities for students to solve challenging 
mathematical tasks, to articulate their mathematical reasoning, and to make connec-
tions between mathematical ideas and representations (Franke et al., 2007; Hiebert 
et al., 1997). This kind of instruction has been called ambitious mathematics 
teaching (Lampert, Beasley, Ghousseini, Kazemi, & Franke, 2010) because of the 
knowledge and skill involved in supporting each student to develop an increasingly 
sophisticated understanding of central mathematical ideas; it necessarily requires 
that teachers teach in response to what students do as they engage in solving math-
ematical tasks (Kazemi, Franke, & Lampert, 2009; Lampert & Graziani, 2009). 
Ambitious mathematics teaching can take a variety of forms. One common lesson 
structure in reform-oriented middle-grades mathematics curricula (e.g., Connected 
Mathematics Project) is the three-phase lesson. A complex task is introduced, 
students work on solving the task, and the teacher orchestrates a concluding whole-
class discussion (Van de Walle, Folk, Karp, & Bay-Williams, 2010). 

Prior research has suggested that in an effective first phase of lessons with this 
structure, the teacher clarifies expectations for the final work product and how 
students should work (e.g., individually or in groups) to solve the task (Boaler & 
Staples, 2008; Smith, Bill, & Hughes, 2008). During the second phase of instruc-
tion, while students are solving the task either individually or in groups, the teacher 
circulates among the students, paying close attention to what students are doing as 
they complete the task so that he or she can decide what mathematical ideas and 
whose solutions to make a focal point during the whole-class discussion that 
follows (Lampert, 2001; Stein, Engle, Smith, & Hughes, 2008). The third phase of 
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648 Setting Up Complex Tasks

instruction refers to when the teacher orchestrates a concluding whole-class  
discussion aimed at developing all students’ increasingly sophisticated under-
standing of the key mathematical ideas (Stein et al., 2008). In order to orchestrate 
a productive concluding whole-class discussion (i.e., one that advances the learning 
of all students), the teacher has identified and sequenced particular students’ solu-
tions to ensure that the discussion advances his or her instructional agenda (Stein 
et al., 2008). During the discussion, the teacher presses students to explain and 
justify their solutions, evaluate their peers’ solutions, and make connections 
between different solutions (Ball & Bass, 2000; Chapin, O'Connor, & Anderson, 
2003; Hiebert et al., 1997; Stein, Smith, Henningsen, & Silver, 2000). The teacher 
plays a crucial role in mediating the communication between students to help them 
understand each other’s explanations (McClain, 2002) and in supporting students 
to link student-generated solution methods to disciplinary methods and important 
mathematical ideas (Stein et al., 2008). 

A central goal of this article is to elaborate on the how of ambitious mathematics 
teaching by identifying high-leverage practices (Ball, Sleep, Boerst, & Bass, 2009) 
that teachers can develop. Such practices have the potential to increase student 
participation and learning as they engage in mathematical activity aimed at rigorous 
learning goals. Here, we focus on the first phase of a lesson, in particular the prac-
tice of setting up complex tasks so that all students are able to productively engage 
in solving the task and thereby participate in and learn from the third phase of the 
lesson, the concluding whole-class discussion. 

Motivation for the Study
Our concern with specifying aspects of a high-quality setup initially arose from 

watching video recordings of the instruction of middle-grades mathematics 
teachers, all of whom were attempting to implement reform-oriented curricula. The 
video recordings were collected as part of a 4-year research project focused on 
middle-grades mathematics teaching and learning (Cobb & Jackson, 2011; Cobb 
& Smith, 2008). Our goal in watching the videos was to identify forms of practice 
that were not yet specified in the mathematics education research literature and that 
appeared important for supporting all students to substantially participate in and 
learn through solving complex tasks. As we watched the videos, we identified the 
first phase of instruction as important for two reasons. 

First, we noticed that how the task was set up appeared to affect which students 
could participate in solving the task and in what ways. At the start of a lesson, it is 
not reasonable to expect that all students will have requisite or similar under-
standing of a given task statement. Some tasks, particularly those associated with 
middle-grades reform-oriented curricula, often embed problem solving in 
scenarios. Tasks that embed mathematics problem solving in a scenario pose a 
challenge; it is unlikely that all students will be equally familiar with the scenario 
described in a task statement (Ball, Goffney, & Bass, 2005; Boaler, 2002; 
Lubienski, 2000; Silver, Smith, & Nelson, 1995; Tate, 1995). 

For example, consider the Dollars for Dancing task in Figure 1. In this task, 
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649Jackson, Garrison, Wilson, Gibbons, and Shahan

students are asked to represent and interpret various ways of earning money in a 
dance marathon. Scenarios such as this one provide a context to support students’ 
initial engagement in the problem and their mathematization (e.g., Gravemeijer & 
Doorman, 1999) of key ideas and relationships. In this case, the dance marathon 
scenario provides a context about which students can reason to develop meaning 
for linear relationships. However, if a student does not understand key aspects of 
the scenario, it is unlikely that he or she will engage in solving the task. And without 
substantially engaging in solving the task, it is unlikely that a student will be able 
to participate in or learn much from a concluding whole-class discussion. 

Dollars for Dancing
Three students at a school are raising dollars for the school’s Valentine’s Dance. All 
three decide to raise their money by having a dance marathon in the cafeteria the 
week before the real dance. They will collect pledges for the number of hours that 
they dance, and then they will give the money to the student council to get a good DJ 
for the Valentine’s Dance.

Rosalba’s plan is to ask teachers to pledge $3 per hour that she dances. Nathan’s plan 
is to ask teachers to give $5 plus $1 for every hour he dances. James’s plan is to ask 
teachers to give $8 plus $0.50 for every hour he dances.

Part A. Create at least three different ways to show how to compare the amounts of 
money that the students can earn from their plans if they each get one teacher to 
pledge.

Part B. Explain how the hourly pledge amount is represented in each of your ways 
from Part A.

Part C. For each of your ways in Part A, explain how the fixed amount in Nathan’s 
plan and in James’s plans is represented.

Part D. For each of the ways in Part A, show how you could find the amount of money 
collected by each student if they could dance for 24 hours.

Part E. Who has the best plan? Justify your answer.

Figure 1. Dollars for Dancing. Modeled after Task 1.3, “Raising Money,” in Moving 
Straight Ahead: Linear Relationships by Lappan, Fey, Fitzgerald, Friel, and Phillips (2009). 

Second, we noticed that how a task was introduced appeared to affect the work of 
teachers in subsequent phases of the lesson. When students are not supported to 
understand key aspects of the task statement, teachers often spend the next phase of 
instruction reintroducing the task to individuals or groups of students while others 
begin to solve the task. This is not necessarily bad—it may be that some students 
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650 Setting Up Complex Tasks

need additional or different information about the task to begin to solve it in produc-
tive ways. However, reintroducing tasks for an extended period is a loss of valuable 
time. If a teacher spends the second phase of instruction reintroducing the task, he or 
she is unlikely to be able to carefully plan for a concluding whole-class discussion. 
This, then, makes it less likely that the teacher will support students to make impor-
tant connections between student-generated solutions and key mathematical ideas.

Having identified that the setup appeared important for student learning, we 
engaged in a qualitative analysis of the video recordings of 40 middle-grades 
mathematics teachers’ instruction, collected in Year 1 of the project. Our goal was 
to identify key aspects of setting up complex tasks in middle-grades mathematics 
lessons that were likely to support students’ subsequent participation in instruction. 
The four key aspects that we identified pertained to contextual features, mathemat-
ical ideas and relationships, development of common language, and maintenance 
of the cognitive demand of the task. Each of these aspects is described in detail in 
the conceptual framework section, which follows. 

We became interested in whether—and if so, how—the aspects we identified 
were related to students’ opportunities to learn, specifically in concluding whole-
class discussions. We therefore conducted a quantitative study of the video record-
ings from 165 middle-grades mathematics teachers in Year 3 and Year 4 of the 
project, in which we aimed to answer the following questions:

1. What is the nature of the setup phase of instruction? In particular:

a. To what extent do teachers attend to contextual features and the mathematical 
relationships of a task statement?

b. To what extent do teachers maintain the cognitive demand of the task during 
the setup, especially when they attend to the contextual features and the math-
ematical relationships of the task?

2. How is the quality of the setup related to students’ opportunities to learn math-
ematics in the concluding whole-class discussion?

Conceptual Framework
Mathematical Tasks Framework 

Our research builds on Stein and her colleagues’ efforts to conceptualize key 
relationships between features of classroom instruction and students’ opportunities 
to develop significant mathematical understanding (e.g., Stein, Grover, & 
Henningsen, 1996; Stein et al., 2000). A central aspect of instruction is the cognitive 
demand of the activity in which students participate. Cognitive demand refers to 
what students need to do (e.g., the nature of reasoning) in order to solve a particular 
problem or, at a broader level, participate in a given activity (Doyle, 1988). One 
determining factor of the cognitive demand of classroom activity, and thus the 
nature of students’ learning opportunities, is the nature of the task that a teacher 
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chooses to use in instruction, or the task as it appears in instructional or curricular 
materials (Stein & Lane, 1996). Stein, Grover, and Henningsen (1996) systemati-
cally identified characteristics of mathematics tasks with low and high cognitive 
demand. Tasks with low cognitive demand require students to memorize or repro-
duce facts or to perform relatively routine procedures without making connections 
to the underlying mathematical ideas. Tasks with high cognitive demand tend to 
be open-ended (i.e., a solution strategy is not immediately apparent); require 
students to make connections to the underlying mathematical ideas; and engage 
students in disciplinary activities of explanation, justification, and generalization. 
Based on analyses of middle-grades mathematics instruction aimed at ambitious 
learning goals, Stein and Lane (1996) found that the use of tasks with high cogni-
tive demand was related to greater student gains on an assessment requiring high 
levels of mathematical thinking and reasoning. 

However, as Stein et al. (1996) illustrated, selecting a task with high cognitive 
demand does not ensure that students will be provided opportunities to engage in 
rigorous mathematical activity. Instead, tasks have to be understood as part of class-
room activity, and interactions between the teacher, students, and the task determine 
the extent to which the cognitive demand is maintained across the course of a lesson 
(Stein et al., 2000). The cognitive demand of a high-level task can be lowered if a 
teacher or student suggests a solution path before students begin to solve a problem 
or if a teacher alters the directions in the task such that students are no longer required 
to justify their thinking or solve the more challenging aspects of the problem. 

Stein and colleagues identified two phases of instruction that were influential 
when considering the extent to which the cognitive demand of a task as it appeared 
in materials is maintained: the setup phase and the implementation phase (Stein & 
Lane, 1996). In Stein, Smith, Henningsen, and Silver’s (2000) terms, the setup 
phase of instruction refers to how a teacher introduces the task, or “the teacher’s 
communication to students regarding what they are expected to do, how they are 
expected to do it, and with what resources” (p. 25). All activity that occurs after 
the setup constitutes the implementation phase, in which students begin to work to 
solve the task. Therefore, it includes both what happens when students work on 
solving the task and any concluding whole-class discussion. 

Stein et al. (1996) found that in classrooms where tasks with the potential for 
high levels of cognitive demand were assigned, teachers and students often 
decreased the cognitive demand over the course of the lesson. They identified three 
factors that appeared to influence whether the teacher and students maintained the 
challenge of the task through the setup: the teacher’s goals for instruction, the 
teacher’s subject matter knowledge, and the teacher’s knowledge of students. For 
example, a task of high cognitive demand could be viewed by a teacher as 
supporting the development of procedural understanding of a particular skill 
because of her instructional goals or her knowledge of mathematics. Additionally, 
Stein et al. (1996) wrote that a major factor contributing to the decline of the cogni-
tive demand of high-level tasks was “student failure to engage in high-level 
activities due to lack of interest, motivation, or prior knowledge” (p. 480). They 
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652 Setting Up Complex Tasks

argued that this stems from teachers’ lack of knowledge of their students—teachers 
did not choose an appropriate task for their students. 

Key Aspects of High-Quality Setups 	
Stein and colleagues identified the setup as an important phase of middle-grades 

mathematics instruction in lessons aimed at rigorous goals for students’ learning. 
However, there has been little work done to identify what teachers might do during 
this phase of instruction to support student participation in solving tasks of high 
cognitive demand.1 As stated above, in our qualitative study of 40 videos collected 
in Year 1 of the research project, we identified four key aspects of high-quality 
setups, which we conjectured would support student participation in solving 
complex tasks. The four aspects are as follows:

1. Key contextual features of the task scenario are explicitly discussed.

2. Key mathematical ideas and relationships, as represented in the task statement, 
are explicitly discussed.

3. Common language is developed to describe contextual features, mathematical 
ideas and relationships, and any other vocabulary central to the task statement 
that might be confusing or unfamiliar to students. 

4. The cognitive demand of the task is maintained over the course of the setup.

We elaborate these four aspects here in order to illustrate what we investigated in 
teachers’ instruction. The explanation of these aspects is grounded in an actual setup 
from a seventh-grade classroom that was video recorded in Year 1 of the research 
project. This setup is also described in Jackson, Shahan, Gibbons, and Cobb (2012). 

The teacher, Mr. Smith,2 introduced the Dollars for Dancing task (shown in 
Figure 1) about midway through the school year. In prior lessons, the students used 
tables, graphs, and equations to solve problems involving linear relationships with 
y-intercepts of zero. This lesson was their first encounter with a linear relationship 
with a non-0 y-intercept. Mr. Smith’s goal was to leverage the dance marathon 
scenario to support students in developing understanding of the y-intercept as an 
initial value and its relationship to slope. Mr. Smith devoted 8 minutes of an hour-
long lesson to setting up this task.

Key contextual features. As suggested above, the extent to which a student is 
familiar with a task scenario will impact whether the student can productively 
engage in solving the task. Thus, one key aspect of an effective setup is the explicit 

1 Franke, Kazemi, and colleagues (Franke, 2006; Kazemi et al., 2009) have identified the practice of 
“problem posing” as critical for supporting all students’ learning in elementary mathematics teaching. 
Their work provides useful images of what high-quality problem posing, or setting up tasks, looks like 
in the context of elementary mathematics. 

2 Note that all names are pseudonyms and quotations are taken from transcripts of video recordings 
of classroom instruction.
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discussion of the key contextual features of the task scenario. Key contextual 
features are aspects of the scenario that students would not understand unless they 
had prior experience with it. For example, key contextual features of the Dollars 
for Dancing scenario include knowing what a dance marathon might involve and 
why people organize and participate in dance marathons to raise funds. 

To develop his students’ understanding of the key contextual features in Dollars 
for Dancing, Mr. Smith elicited students’ prior knowledge about dance marathons 
by projecting pictures of dance marathons from the Internet and asking students to 
discuss what they saw. For example, one student replied “dance,” while another 
student said “dance marathon.” He took advantage of students’ contributions to 
develop an initial description of dance marathons as “groups of people who dance 
for a certain amount of time.” Mr. Smith then pressed students to explain why people 
might hold a dance marathon. He built on several of their proposals to explain that 
the task they were going to solve involved holding a dance marathon to raise money 
in order to hire a deejay for the school’s upcoming Valentine’s Dance. 

Key mathematical ideas and relationships. A second critical aspect of high-
quality setups involves the explicit discussion of how the key mathematical ideas 
and relationships are represented in the task statement. In Thompson’s (1996) and 
McClain and Cobb’s (1998) terms, students’ initial understanding of the mathemat-
ical relationships described in the task statement provide a basis for any mathema-
tizations they might make as they attempt to solve a task. For example, in Dollars 
for Dancing, the students were expected to use tables, graphs, and equations to 
represent the accumulation of money over time in three different plans. In order to 
do so, it was essential that the students understand that money accumulates as a 
participant continues to dance for a greater number of hours. Furthermore, there are 
different ways of accumulating money—starting with a fixed amount and/or earning 
a fixed amount of money per hour of dancing. Absent situation-specific imagery, or 
an understanding of how these key mathematical relationships are represented in 
the statement, students’ efforts to solve tasks typically become decoupled from their 
interpretations of problem situations (McClain & Cobb, 1998; Thompson, 1996). 
In the case of Dollars for Dancing, without an image of how money is accumulating 
over time, students are unlikely to make connections between accumulating quanti-
ties of money, slope, and y-intercept, as the task intends. It is also probable that some 
students will struggle to create appropriate tables, graphs, and equations themselves, 
or to understand their peers’ representations. 

Mr. Smith’s setup illustrates this second aspect of high-quality setups. In addition 
to discussing key contextual features of the scenario, Mr. Smith also supported his 
students’ understanding of how a key mathematical relationship (the accumulation 
of money) was represented in the statement. He began with the difference between 
an up-front amount and an hourly amount.

There [are] two ways you can raise money in a dance marathon that we’re going to 
talk about. One way is to dance for a long time.… So if you dance for a long time, and 
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let’s say I give you 50 cents every hour, you’re going to make a lot of money. But 
there’s another way that you could raise money, and that is to ask for a pledge. Not 
per hour, but just a donation. Okay, we call that a donation. And you might go up to 
your teacher and say, “Can you give me $6 for being in the dance marathon?” Now 
that’s different. Can anybody explain how that is different if I say, “Can you give me 
$6?” or instead, “Can you give me 50 cents an hour?” 

Mr. Smith called on a number of students to explain the distinction. For example, 
one student, Jasmine, responded, “Either they pay you up front or you continue, so 
like they continue to pay you for however long you dance.” As students shared their 
ideas, Mr. Smith asked students to restate what others said (e.g., “Can you say what 
Jasmine said in your own words?”). Mr. Smith also praised students’ ideas and 
adopted students’ ways of describing the distinction. For example, another student 
offered, “Well, like one of them you already start with it and the other one you have 
to kind of work for it to get more.” Mr. Smith responded, “Exactly. I like the way 
that’s worded. One of them you start with it, you just have it. The other one you 
got to work for it to get the money.” Once it was clear that the majority of students 
could explain the distinction between the two ways to accumulate money, Mr. 
Smith handed out the task sheet and briefly explained students’ responsibilities for 
working in their small groups. The students then began to solve the task. 

Development of common language. A third aspect of a high-quality setup relates 
to the nature of teacher and student talk. In the effective setups that we identified, 
teachers did not simply talk to students about the key features of the task. Instead, 
they solicited input from multiple students and asked questions that required more 
than a yes or no response. Broad and active student participation helps the teacher 
assess students’ understanding of the key features of the task in order to determine 
the level of support that students may need (Boaler, 2002). Mr. Smith’s setup is 
illustrative in this regard because he elicited students’ understanding of the key 
contextual features and mathematical relationships in the scenario. 

In addition, high-quality setups aim at developing common language to describe 
key contextual features and mathematical ideas and relationships. The use of 
common language is an indicator that students have developed taken-as-shared 
understanding (Cobb, Wood, Yackel, & McNeal, 1992; Cobb, Yackel, & Wood, 
1992) of the key features of the task. Given that one cannot determine that any two 
people have the same understanding, taken-as-shared refers to understanding for 
which there is evidence that it can be taken as, or reasonably assumed to be, compat-
ible enough to enable students to communicate in consistent ways about the rele-
vant ideas. Prior research has identified how supporting the development of taken-
as-shared understanding among students serves as a basis for communication 
during instructional activity, for example when communicating and representing 
mathematical ideas in small groups (Cobb, Wood, et al., 1992; McClain & Cobb, 
1998) and when supporting students with less developed understanding of the 
mathematical ideas to participate in and benefit from a whole-class discussion 
(McClain & Cobb, 1998). 
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Visual representations can support the establishment of a taken-as-shared under-
standing of an important idea. For example, Mr. Smith projected images of dance 
marathons, a key contextual feature of the Dollars for Dancing scenario. However, 
it is crucial that students are provided opportunities to develop common language 
to describe the representation. As Moschkovich (1999) clarified, “Objects do not 
provide ‘extra-linguistic clues.’ The objects and their meanings are not separate 
from language, but rather acquire meaning through being talked about and these 
meanings are negotiated through talk” (p. 14).

Mr. Smith’s setup illustrates the establishment of taken-as-shared understanding 
of key contextual features and mathematical relationships. In particular, he used 
several talk moves (Chapin et al., 2003) to support students in developing common 
language. For example, he revoiced or adopted students’ language for describing 
aspects of the scenario, asked students to state or restate ideas in their own words, 
asked students to add on to their peers’ ideas, and marked particular ideas as impor-
tant. Asking students to revoice and add on to their peers’ ideas also provided Mr. 
Smith with an informal assessment of the extent to which the students had devel-
oped compatible understandings of key features of the task. 

Maintenance of the cognitive demand. The aspects of effective setups described 
above are aimed at ensuring that all students can engage productively in solving 
complex tasks while maintaining the cognitive demand of the task during the setup. 
Here, we refer to Stein et al.’s (2000) use of cognitive demand as the nature of 
reasoning students are expected to engage in to participate in the given activity 
(e.g., solving the task, discussing their solutions to the task in a whole-class discus-
sion). As Sztajn, Confrey, Wilson, and Edgington (2012) clarified, the cognitive 
demand of a task as experienced by students is the relationship between what is 
expected in a task and individual students’ present conceptions and their “informal 
and previous instructional experiences” (p. 150). Thus, a central part of setting up 
a task is identifying what counts as cognitively demanding—given the instructional 
goal(s) of a lesson or sequence of lessons, students’ prior instructional experiences, 
and students’ current understanding—and planning how to engage students in 
solving the task without compromising students’ opportunities to learn significant 
mathematics. In our estimation, providing students with access to the key ideas of 
complex tasks while maintaining the cognitive demand of the task is delicate work. 

For example, Mr. Smith knew his students were already comfortable making 
tables, graphs, and equations to represent linear equations with y-intercepts of 0. 
Representing equations with y-intercepts not equal to 0 was a central aspect of the 
challenge of this particular task. Mr. Smith could have reduced the cognitive 
demand of the Dollars for Dancing task by suggesting to the students how to solve 
the problem (e.g., show the students how to use a graph or equation to represent a 
linear relation with a non-0 y-intercept). Another challenging aspect of the task 
entailed comparing the merits of the particular plans using mathematical justifica-
tion. Therefore, Mr. Smith would have reduced the cognitive demand of the task 
had he told students to skip parts D and E. Instead, he used the setup to ensure that 
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656 Setting Up Complex Tasks

all students developed the requisite understanding to reason about significant 
mathematical ideas and maintained the cognitive demand of the task. 

Summary. Above, we described four key aspects of setting up complex tasks 
that we conjectured would support all students to participate substantially in class-
room activity. It is worth clarifying two points. First, our division of contextual 
features from key mathematical ideas and relationships is artificial; the key math-
ematical ideas and relationships as represented in a task scenario are also contextual 
features of the scenario. We have chosen to separate key mathematical ideas and 
relationships from contextual features because they capture two foci of high-quality 
setups. A teacher can attend to what we term contextual features without attending 
to key mathematical ideas, and vice versa. 

Second, throughout we use the language of key features and mathematical ideas 
and relationships. Scenarios associated with cognitively demanding tasks are often 
quite dense, both contextually and mathematically. The scenarios could lend them-
selves to extended talk about a number of contextual features, which may or may 
not be critical to solving the task, and a given task could be used to develop several 
mathematical ideas and relationships. Clearly, time is of the essence in classroom 
instruction; therefore, teachers need to make judgments regarding what to focus on 
in the setup. These judgments must be made against a clear set of mathematical 
goals for instruction and knowledge of what is likely to be unfamiliar (contextually, 
mathematically, and linguistically) to students.

Methods
In the remainder of this article, we report on an empirical study of 165 middle-

grades mathematics teachers’ instruction. In this study, we sought to understand 
the nature of teachers’ setups, and to explore relationships between how tasks were 
set up and students’ opportunities to learn mathematics in the concluding whole-
class discussion.

Research Context
To answer our research questions, we used data that were collected in Year 3 

(2009–2010) and Year 4 (2010–2011) of the 4-year project (2007–2011) designed 
to address the question of what it takes to improve the quality of middle-grades 
mathematics teaching, and thus student achievement, at the scale of large, urban 
districts in the United States. Each year, several types of data were collected to test 
and refine a set of hypotheses and conjectures about district and school organiza-
tional arrangements, social relations, and material resources that might support 
mathematics teachers’ development of high-quality instructional practices at scale 
(Cobb & Jackson, 2011; Cobb & Smith, 2008). In each of the four districts, approx-
imately 30 teachers and their instructional leaders (principals, assistant principals, 
and coaches) participated in the project. Data collected include interviews with all 
participants, video recordings of classroom instruction, assessments of teachers’ and 
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coaches’ mathematical knowledge for teaching (Hill, Schilling, & Ball, 2004), video 
or audio recordings of professional development sessions, and student achievement 
data. For the purposes of this study, we focused on one form of data, video record-
ings of classroom instruction, which we explain in further detail below. 

Participating districts. Each of the four districts was purposively invited to 
participate in the research project for a few reasons. On the one hand, the districts 
faced challenges typical of most large, urban districts—limited resources, high 
teacher turnover, large numbers of students identified as low performing in math-
ematics, and disparities between subpopulations of students’ performance on state 
assessments (Darling-Hammond, 2007). On the other hand, the districts were 
chosen because their response to high-stakes accountability pressures to improve 
students’ performance in middle-grades mathematics was atypical. Namely, each 
district was attempting to achieve a vision of instruction in middle-grades mathe-
matics classrooms that is broadly compatible with the National Council of Teachers 
of Mathematics’ (2000) Standards. Three of the four districts (which we will call 
Districts A, B, and D) adopted the Connected Mathematics Project 2 (CMP2) 
curriculum materials. In District C, mathematics specialists created a curriculum 
that was a blend of CMP2 and a more conventional mathematics text. Districts B, 
C, and D adopted their respective curricula in Year 1 of the project; prior to 
2007−2008, mathematics teachers in those districts used a conventional mathe-
matics text. District A adopted CMP2 in Year 2 of the project; however, District A 
teachers had been using the first edition of the Connected Mathematics Project 
materials for approximately 10 years prior to the adoption of CMP2. Additionally, 
each district supported teachers in developing ambitious forms of instructional 
practices (e.g., curriculum frameworks, coaching, regularly scheduled time to 
collaborate with colleagues on issues of instruction, professional development for 
instructional leaders).

Participating teachers. Six to ten schools in each district were selected to 
participate in the project. Schools were purposively sampled to reflect variation in 
student performance and in capacity for improvement within each district. Our 
sample consists of 165 teachers across the four districts, located in the selected 
schools: 34 teachers from District A, 48 teachers from District B, 35 teachers from 
District C, and 48 teachers from District D. Teachers in our sample averaged 9.5 
years of experience teaching mathematics, with a significantly more experienced 
group of teachers averaging 13.3 years of experience in District A. The number of 
teachers with 3 or fewer years of experience teaching mathematics varied by 
district: 4 teachers in District A, 25 teachers in District B, 11 teachers in District 
C, and 27 teachers in District D. 

Data Source: Video Recordings of Classroom Instruction
Two days of instruction of the same class were video recorded in January, 

February, or March for each participating teacher in each year of the study. When 
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possible, videographers recorded 2 consecutive days of instruction. This was done 
in order to account for the fact that a lesson might extend over more than 1 day. 
Teachers were expected to teach the content that they would normally teach; 
however, we asked that teachers include a problem-solving activity and a related 
whole-class discussion in their instruction. This was compatible with the lesson 
structures suggested in all the districts’ curricula. To be clear, the goal of the video 
recordings was not to capture the nature of teachers’ everyday practice but rather 
to assess the quality and extent to which a teacher might enact the particular kind 
of instruction articulated by district leaders as the goal of the instructional reform. 
Given our directions to include a problem-solving lesson and a whole-class discus-
sion, it would be appropriate to think of what was video recorded as teachers’ best 
shot at enacting reform-oriented instructional practices. Although the majority of 
the lessons were contained within a single class period, 44 of the lessons spanned 
2 days. Therefore, we analyzed a total of 460 lessons for the 165 teachers (132 
teachers participated in Year 3; 87 of those teachers remained in the study in Year 
4, and 33 teachers joined the study in Year 4). 

Measuring Students’ Opportunities to Learn Mathematics
The video-recorded lessons for each teacher were coded using an expanded 

version of the Instructional Quality Assessment (Boston, 2012; Matsumura et al., 
2006). The standard Instructional Quality Assessment (IQA) is based on the 
Mathematical Tasks Framework and is consistent with the districts’ instructional 
visions and professional development programs. The IQA is designed to measure 
the cognitive demand of the task as it appears in curricular materials, the cognitive 
demand of the task as implemented, and the quality of the concluding whole-class 
discussion. Prior studies have shown the individual IQA observational rubrics to 
be sufficiently reliable and valid (Boston & Wolf, 2006; Matsumura, Garnier, 
Slater, & Boston, 2008). The IQA did not have a rubric specific to the setup phase 
of instruction, other than a measure of the clarity of expectations regarding a final 
work product.3 We therefore developed a set of rubrics to measure the quality of 
the task setup. We refer to the use of the standard IQA and the additional task-as-
set-up rubrics as the Expanded IQA. Figure 2 provides a brief description of each 
rubric, and Figure 3 illustrates how each of the rubrics maps onto the Mathematical 
Tasks Framework and a three-phase lesson structure. 

The Expanded IQA focuses on what teachers and students do in the classroom; 
however, it does not directly measure what students actually learned via instruction. 
Therefore, in the analyses that follow, we explicitly refer to students’ opportunities 
to learn, with the assumption that the higher the scores on the rubrics, the more likely 
it is that students were provided opportunities to learn significant mathematics.

 3At the start of the larger project, the research team chose not to use the rubrics related to Clear 
Expectations for two reasons: (a) pilot studies revealed that they were the most challenging rubrics 
in producing reliable estimates (Matsumura et al., 2006), and (b) many of the elements of the Clear 
Expectations rubrics were designed to be used with student work samples, which we did not collect 
from the participating teachers.
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Standard IQA measures. In our analyses, we used the following IQA measures 
of opportunities to learn: Task Potential; Academic Rigor of the Discussion; and 
two finer grained measures of the quality of discussion, Student Linking and 
Student Providing.4 Each is explained below, and all Expanded IQA rubrics are 
available at http://peabody.vanderbilt.edu/departments/tl/teaching_and_learning_
research/mist/mist_instruments.php.

Rubric Focal Aspect of Instruction

ST
A

N
D

A
R

D
 IQ

A
 R

U
B

R
IC

S

Task Potential* Cognitive demand of the task as it appears in the 
curricular materials

Task Implementation Cognitive demand of the task as it is implemented 
(after students start to work on solving the task 
through the end of the lesson)

Academic Rigor of the 
Discussion*

Academic rigor of the whole-class discussion

Participation The percentage of students who participate in the 
whole-class discussion

Teacher Linking Teacher links between contributions within the 
whole-class discussion

Student Linking* Student links between contributions within the whole-
class discussion

Teacher Asking Teacher press for conceptual explanations within the 
whole-class discussion

Student Providing* Student providing of conceptual explanations within 
the whole-class discussion

SE
T

U
P 

R
U

B
R

IC
S

Contextual Features* Building a taken-as-shared understanding of the 
contextual features of the problem-solving scenario in 
the task statement

Mathematical 
Relationships*

Building a taken-as-shared understanding of the 
mathematical relationships and ideas in the task state-
ment

Setup Maintenance* Maintenance of the cognitive demand of the task 
specific to the setup phase of instruction

Post Setup Task 
Potential

Cognitive demand of the task (based on the instruc-
tional materials) at the end of the setup

Setup Participation The percentage of students who participate in the 
setup discussion

Note. Rubrics marked with * are included in this analysis.

Figure 2. Expanded IQA rubrics and focal aspects of instruction.

4 The standard IQA includes several other measures of the quality of discussion: teacher linking, 
teacher asking, and student participation. For the purposes of this analysis, we decided to use the 
measures related to the content of student talk because of our focus on how the setup might support 
students’ participation in the concluding whole-class discussion. Additionally, in our data, teacher 
linking and teacher asking are highly correlated with the corresponding student measures. We did not 
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Figure 3. Mathematical Tasks Framework (Stein et al., 2000), three-phase lesson struc-
ture, and Expanded IQA rubrics (limited to those used in this analysis).

The task refers to the activity (usually written) that the majority of the students 
participated in for the majority of the time; there was only one task scored for each 
video-recorded lesson. Task Potential measures the cognitive demand of the task 
that is posed. For Task Potential, a score of 0 indicates the task is not mathematical 
in nature. Scores of 1 or 2 indicate that a task has relatively low cognitive demand. 
A score of 1 indicates that students are asked to memorize or reproduce facts. A 
score of 2 indicates that students are asked to apply a standard procedure to solve 
a relatively routine problem. Scores of 3 or 4 indicate that a task has relatively high 
cognitive demand. A score of 3 indicates that students are asked to engage in 
complex thinking (e.g., make mathematical connections, create meaning for a 
procedure), but not necessarily provide evidence for their reasoning. A score of 4 
indicates that students are asked to solve a relatively nonroutine problem and to 
provide evidence of their mathematical reasoning (Stein et al., 2000). For example, 
the Dollars for Dancing task (Figure 1) would be scored a 4 because there are 
multiple solution pathways, students are expected to make connections between 
representations, and students are expected to explain their reasoning. Given that 
we did not have data on individual students’ mathematical understanding or the 
nature of instruction that happened prior to the video recordings, we were unable 
to judge cognitive demand as students actually experienced a task. Instead, any 
measure of cognitive demand is based on the nature of reasoning expected in the 
classroom activity. 

Academic Rigor of the Discussion (ARD) measures the quality and nature of the 
discourse used in the concluding whole-class discussion phase of the lesson; both 

use measures of student participation because we found that with video recordings of instruction it 
was difficult to reliably count the exact number of student participants. The Post Setup Task Potential 
only differed in about 6% of lessons from the Task Potential, so we did not include that in our analy-
ses. Because we chose to focus on the concluding whole-class discussion phase of the lesson, we did 
not include the overall Task Implementation score in our analyses.

Academic Rigor of the Discussion
Student Linking
Student Providing

} }

Task as it 
appears in
instructional
materials

Task as 
set up

Task as 
implemented Student

learning

Phase 1
(Task is
introduced)

Phase 2   
(Students 
work on 
solving task)

Phase 3   
(Whole-class
discussion)

Task Potential

Contextual Features
Mathematical Relationships
Setup Maintenance
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teacher and student actions are taken into account when assigning a score. For ARD, 
a score of 0 indicates there was no concluding whole-class discussion. A score of 
1 indicates that students provide brief or one-word answers. A score of 2 indicates 
that, in a whole-class format, students describe their written work for solving the 
task but do not engage in a discussion of their strategies, procedures, or mathemat-
ical ideas. This type of discussion often takes the form of a show-and-tell in which 
students take turns sharing solutions with little support to engage in conceptual 
discourse or to make connections between solution strategies and important math-
ematical ideas (Ball, 2001). A score of 3 indicates that students show or describe 
written work for solving a task and/or engage in a discussion of the important 
mathematical ideas in the task. During the discussion, students provide explana-
tions of why their strategy, idea, or procedure is valid and/or students begin to make 
connections, but the explanations and connections are not complete and thorough. 
A score of 4 indicates that, in the discussion, students provide thorough explana-
tions of why particular strategies are valid and make connections between strategies 
and the underlying mathematical ideas. 

The standard IQA includes additional measures that provide a finer grained 
analysis of the quality of whole-class discussion. Student Linking measures the 
extent to which students’ contributions link to and build upon each other; the focus 
is on what students do, not what the teacher does. Examples of Student Linking 
include revoicing ideas and relating an idea to someone else’s idea. A score of 1 
indicates that students do not make any effort to link to prior contributions. A score 
of 2 indicates that students make superficial efforts to connect ideas (e.g., there are 
indications of connections between ideas without explicit talk about how they are 
connected). A score of 3 indicates that students make efforts to connect ideas to 
each other with some talk of how they are connected; a score of 4 indicates that 
students consistently make explicit connections. 

Student Providing measures the extent to which students support their contribu-
tions with evidence or reasoning; similar to Student Linking, the focus is on what 
students do, not what the teacher does. A key distinction in measuring Student 
Providing is whether the nature of student reasoning is conceptual or calculational. 
Research suggests that productive whole-class discussions, or those that support 
students’ conceptual understanding of central mathematical ideas, are characterized 
by conceptual rather than calculational discourse (Cobb, Stephan, McClain, & 
Gravemeijer, 2001; A. G. Thompson, Philipp, Thompson, & Boyd, 1994). 
Calculational discourse refers to discussions that only emphasize how one arrived 
at a solution. In contrast, conceptual discourse refers to discussions that emphasize 
why one chose to solve a problem in a given way and how the problem was solved. 
A student provides an explicit rationale for using particular methods and grounds 
any talk of mathematical quantities or relationships in the context of the given task. 
Conceptual explanations are therefore more likely to support all students’ learning, 
particularly the listening students, because the student provides an “explicit account 
of the task interpretations that underpin particular solution strategies” (Jackson & 
Cobb, 2010, p. 24). A score of 1 indicates that there are no efforts on the part of 
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students to provide evidence for their contributions or to explain their thinking. A 
score of 2 indicates calculational explanations or insufficient evidence. A score of 
3 or 4 indicates that students provide conceptual explanations, with a 4 indicating 
that students consistently provide conceptual explanations. A lesson receives a 0 
for both Student Linking and Student Providing if there is no concluding whole-
class discussion.

Task-as-set-up measures. A team of mathematics educators and doctoral 
students, including the first four authors of this paper, developed a set of rubrics to 
measure the quality of the task-as-set-up phase of instruction. As described above, 
we identified four key aspects of high-quality setups in a qualitative analysis of 40 
video recordings collected in Year 1 of the project (2007–2008). We then developed 
a set of rubrics based on those observed aspects. The development of the rubrics 
was an iterative process carried out over two years. We used drafts of rubrics to 
code existing lessons from Years 1 and 2 of the project to both refine them concep-
tually (e.g., deciding how taken-as-shared understanding of particular features of 
a task might be developed) and pragmatically (e.g., deciding how to code setups 
of tasks without a problem-solving scenario). We regularly consulted with an expert 
in measuring the quality of instruction in mathematics education throughout the 
process of rubric development. Because we know of no instrument that attends 
specifically to the setup, we were unable to externally validate our measures with 
an existing instrument. However, one approach to testing construct validity is to 
look for relationships between the measures and existing evidence of opportunities 
to learn (Kane, 2006). In our case, we examined relationships between what 
happened in the setup and opportunities to learn in the concluding whole-class 
discussion. As we share in the results section, we found significant relationships 
between these two phases of instruction using our instrumentation. 

The setup rubrics and measures were designed to complement the standard IQA 
rubrics, and as such, they employ compatible language and have a structure similar 
to the standard IQA rubrics described above. Contextual Features (CF) measures 
the extent to which students are supported to develop taken-as-shared under-
standing of the contextual features of the problem-solving scenario (PSS). The CF 
rubric is only used if the task has a PSS (i.e., the mathematical task is presented in 
the context of a story or scenario). For example, a naked-number task or a problem-
solving task that does not include a scenario (e.g., find the angle of rotation of a set 
of objects and then conjecture about the relationship between angles of rotation 
and rotational symmetry) would not be scored using the CF rubric. A score of 0 
indicates that no attention is given to the contextual features. A score of 1 indicates 
that the teacher is the only person providing information about the contextual 
features of the PSS; at best, students provide yes/no responses. A score of 2 indi-
cates that the teacher elicits what students understand about the contextual features, 
but their ideas remain unconnected. A score of 3 or 4 indicates that the teacher and 
students connect ideas together regarding the contextual features, with a 4 indi-
cating these connections are consistent or happen frequently. Therefore, a score of 
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3 or 4 indicates there is evidence that a taken-as-shared understanding of the 
contextual features of the PSS was likely developed. 

Mathematical Relationships (MR) measures the extent to which students are 
supported to develop taken-as-shared understanding of mathematical ideas and 
relationships, as they are represented in the task statement. To be clear, coders are 
not asked to assess the relevance of the mathematical ideas that a teacher chooses 
to discuss in the setup. Instead, the coder is asked to assess the quality of teacher 
and student talk with respect to the mathematical ideas discussed. The MR rubric 
is used for any type of task. A score of 0 indicates that no attention is given to the 
mathematical relationships. A score of 1 indicates that the teacher is the only person 
providing information about the mathematical relationships; at best, students 
provide yes/no responses. A score of 2 indicates that the teacher elicits what 
students understand about the mathematical relationships, but their ideas remain 
unconnected. A score of 3 or 4 indicates that the teacher and students consistently 
connect ideas together regarding mathematical relationships, with a 4 indicating 
evidence of a connection that is conceptual in nature. Thus, a score of 3 or 4 indi-
cates there is evidence that a taken-as-shared understanding of the mathematical 
relationships was likely developed. 

We also measured whether the cognitive demand of the task was maintained, 
increased, or decreased during the task-as-set-up phase of instruction; we call this 
the Setup Maintenance. A lesson was scored as maintain if the setup did not alter 
the cognitive demand of the initial task the students were to complete. A lesson was 
scored as decrease if the teacher reduced the cognitive demand of the initial task. 
Such a decrease in cognitive demand can manifest itself subtly if a teacher suggests 
a particular approach to the problem, yet still requires students to carry out the task 
as described in the instructional materials. More dramatically, a teacher may 
decrease the cognitive demand during the setup by modifying the task as described 
in the instructional materials (e.g., the teacher eliminates task sections that required 
students to explain their mathematical reasoning). Our coding scheme allowed for 
an increase in the cognitive demand during the setup. However, this score category 
was used only one time in our sample, so we marked this case as maintain for the 
purpose of this analysis. 

Coding of Video Recordings
Nine coders were trained to use the Expanded IQA in a reliable manner. Five 

coders were trained in Year 3 of the study and coded the Year 3 (2009–2010) data. 
Seven coders were trained in Year 4 of the study and coded the Year 4 (2010–2011) 
data; three of these coders had been trained the previous year and coded the Year 
3 data as well. We followed the same coding process for both Year 3 and Year 4 
data. Before actual coding began, coders were required to achieve 80% exact score 
agreement across the rubrics on a set of previously coded videos, which were 
chosen to represent the variety of anomalies that the coders would encounter. Each 
of the coders was randomly assigned a list of teachers to code using the Expanded 
IQA. The set of 2 class days for each teacher was coded chronologically, given that 
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it was possible that the lesson from the first day might continue into the second 
day, which would result in just one set of scores for the lesson. It is important to 
note that, given this coder assignment process, the same coders scored the setup 
and concluding whole-class discussion phases of instruction, often in the same 
sitting. However, coders generally assigned scores for the setup phase of instruction 
at the end of the setup, prior to viewing the subsequent phases of the lesson. We 
mention this to acknowledge the fact that the same coder assessing the setup and 
the whole-class discussion could be a source of some bias in the tested relationships 
between the two phases of instruction; however, we do not think that it outweighs 
the potential benefits of this analysis. 

Over the course of the coding period, one set of teacher scores for each coder 
was randomly checked for reliability once every 2 weeks by one of two reliability 
coders to account for rater drift, which resulted in double-coding of approximately 
10% of the sample. Any discrepancies were consensus-coded to maximize the 
accuracy of the scores and to allow for ongoing learning on the part of the coders. 
The overall percent agreement for the coders (across Year 3 and Year 4 coding) was 
70.5%, with an average Cohen’s kappa score of 0.48. The percent agreement range 
for the Expanded IQA was from 60.1% to 82.0%, and the kappa scores ranged from 
0.30 to 0.60. Because this is the first time the task-as-set-up rubrics were used on 
a large scale, we give reliability information for each rubric separately in Table 1. 
We also provide reliability information for the rubrics from the standard IQA that 
we use in our analyses. In general, the reliability scores for the task-as-set-up 
rubrics do not differ significantly from the reliability scores for the standard IQA 
rubrics. 

Table 1
Reliability Scores for the Expanded IQA Rubrics

Rubric Percent agreement Kappa
Task Potential 67.1 .57
Academic Rigor of the Discussion (ARD) 69.2 .60
Student Linking 82.0 .42
Student Providing 65.3 .47
Setup Maintenance 77.4 .50
Contextual Features (CF) 72.1 .51
Mathematical Relationships (MR) 60.1 .30

Methods of Analyses
Nature of the setup phase of instruction. In our first set of analyses, we 

described the nature of setups across the classrooms participating in the study. It is 
possible that the nature of the setup of tasks might differ dramatically depending on 
whether a task included a PSS. For this reason, we generally examined these two 
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types of lessons (lessons with PSS tasks, lessons with non-PSS tasks) separately as 
well as together so we could identify important differences. In our sample of 460 
lessons, 267 involved PSS tasks while the other 193 lessons involved non-PSS tasks. 
Recall that the CF rubric only applies to PSS tasks, so the subsample of lessons with 
both MR and CF scores consists of the 267 lessons involving PSS tasks. We used 
the Wilcoxon rank-sum test when the samples were not matched to test the hypoth-
esis that two independent samples (i.e., unmatched data) were from populations with 
the same distribution. We used the Wilcoxon signed-rank test when the samples were 
matched to test the equality of matched pairs of observations. 

Relationships between the setup and concluding whole-class discussion. Our 
second set of analyses examined relationships between the quality of the setup and 
students’ opportunities to learn in the concluding whole-class discussion. Given 
the nature of our data, we are only able to descriptively report relationships rather 
than make causal claims. Several sets of multilevel ordered logistic regression 
models allowed us to explore and describe the relationships between aspects of the 
setup and students’ opportunities to learn within the concluding whole-class discus-
sion. Scores were assigned at the lesson level (in total one to four lessons per 
teacher, depending on whether the lesson spanned 2 days of instruction and whether 
the teacher participated in both years of the study). We used a multilevel modeling 
approach to account for the fact that we treated multiple lessons for teachers as 
independent observations and because teachers were nested within schools. 

For ease of interpretation of results, we describe a series of four models that were 
estimated for each of the three outcomes of interest (ARD, Student Linking, and 
Student Providing). We considered the possibility that the relationship between the 
setup and concluding whole-class phases of discussion may vary depending on 
whether a task had a PSS. For this reason, we controlled for the two types of tasks 
and tested interactions between whether the task involved a PSS and MR and 
Maintenance. We found no statistical difference. Therefore, in the results section, 
we generally present models in which lessons with both kinds of tasks are consid-
ered together. The exception is the models in which we tested the relationship 
between CF and the outcomes of interest; in those cases, we only consider lessons 
using a task with a PSS.

Across all models, we included scores for Task Potential, Maintenance, and MR, 
as well as a set of dummy variables to indicate district membership. Given that 
prior research suggests the level of challenge of the task could influence the quality 
of the whole-class discussion (Boston & Wolf, 2006), we dichotomized Task 
Potential as low (score of 1 or 2) or high (score of 3 or 4) and controlled for High 
Potential in each of the models. 

In Models 1 and 2, we investigated the relationship between the outcome of 
interest (ARD, Student Linking, Student Providing) and attention to MR. Therefore, 
we regressed the outcome of interest on High Potential, Maintenance, MR, whether 
the task involved a PSS, and district controls. In Model 1, we used the combined 
measure of MR and did not explore the various MR levels; in Model 2, we explored 
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666 Setting Up Complex Tasks

the differential relationships of each MR score level. We did this by replacing the 
MR score in the models with dummy variables for MR score categories (MR 0, 
MR 2, MR 3, and MR 4) while keeping the rest of the model the same. We would 
have used the lowest score as the comparison category, but in this sample, only 
about 6% of the lessons were scored at 0 for MR (see Table 3), indicating no atten-
tion to the mathematical relationships. Therefore, we used a score of 1, indicating 
minimal attention to the mathematical relationships, as the comparison category. 
To control for the rare instances with no attention to mathematical relationships, 
we included MR 0 in the model. 

Models 3 and 4 were limited to lessons with PSS tasks because they included 
attention to CF. Model 3 included the same covariates as Model 1, with the addition 
of CF. In Model 3, CF scores ranged from 0 to 4 (five possible values) and were 
modeled as a continuous variable. Model 4 used our approach of exploring differ-
ential relationships by score levels, as in Model 2, but this time, both MR score 
categories and CF score categories (CF 1, CF 2, and CF 3/4) were included as 
dummy variables. We combined 3s and 4s for CF because 3s or 4s only occurred 
in 27 lessons, with only 3 lessons scored at a 4. Additionally, we used the lowest 
score (0 for CF) as the comparison category; a score of 0 on CF was the most 
common CF score across all the lessons (see Table 3). 

Given that results from ordered logistic regression are in the form of logits, we 
include odds ratios (OR) to aid in interpretation. In general, the odds ratio is an 
effect size that gives the ratio of the odds of an event occurring in one group 
compared with the odds of an event occurring in another group (Cohen, Cohen, 
West, & Aiken, 2003). Also, we report three different levels of significance in the 
tables of results for the models, but in the narrative descriptions of our results, we 
use p < .10 as our cutoff for marginal statistical significance. 

Results
Descriptive Statistics of the Observed Lessons

We first provide descriptive statistics of the Standard IQA scores for the 460 
lessons (i.e., each rubric’s score range, mean, and standard deviation); see Table 2. 
The potential of the tasks used in 274 of the 460 lessons was rated as of high cogni-
tive demand (i.e., 3 or 4 on Task Potential). All but 5 of the 460 lessons were rated 
a 2 or higher on Task Potential. With regard to scores for the concluding whole-class 
discussion, 98 of the 460 lessons (about 21%) did not include a concluding whole-
class discussion and, therefore, received a 0 for ARD, Student Linking, and Student 
Providing.5 Of the lessons with a whole-class discussion, the majority of the scores 
for ARD were low; only 73 lessons were scored at a 3 or 4. Scores for Student 
Linking and Student Providing were similarly low. The highest score for Student 
Linking was a 3, and that occurred in only 9 lessons. For Student Providing,  

5 This finding is fairly consistent with what Matsumura et al. (2006) reported in their pilot study of 
the IQA and middle-grades mathematics teaching in urban schools; they found that 30.8% of lessons 
included, at best, a nonmathematical whole-class discussion.
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61 lessons were scored at a 3 or higher. Overall, the majority of scores for quality 
of the whole-class discussion were at a level 1 or 2. 

The Nature of the Setup Phase of Instruction
To what extent did teachers attend to contextual features and the mathematical 

relationships of a task statement during the setup phase of instruction? Table 3 gives 
frequencies of CF and MR scores for lessons with PSS tasks and non-PSS tasks. 
As represented in Table 3, in lessons with PSS tasks, the scores for MR are higher 
than scores for CF. A Wilcoxon signed-rank test suggests the difference in score 
distributions is statistically significant (z = 11.27, p < .001). In other words, teachers 
appear to attend in higher quality ways to the mathematical relationships than to 
the contextual features. Additionally, a two-sample Wilcoxon rank-sum test 
suggests that there is no statistical difference between lessons with PSS and those 

Table 2
Descriptive Statistics of Standard IQA Scores Across 460 Lessons

Rubric Mean 0 1 2 3 4

Task Potential 2.77 0 5 181 190 84

Academic Rigor of the 
Discussion (ARD)

1.55 98 103 186 55 18

Student Linking 0.94 98 299 54 9 0

Student Providing 1.39 98 153 148 54 7

Table 3 
Frequencies of Particular Scores for Contextual Features (CF) and Mathematical 
Relationships (MR) by Use of Task With or Without Problem-Solving Scenario (PSS)

Score for CF or MR
 PSS task  
(N = 267)

Non-PSS task  
(N = 193)

CF MR MR

4 3 (1%) 16 (6%) 11 (6%)

3 24 (9%) 38 (14%) 26 (13%)

2 61 (23%) 165 (62%) 119 (62%)

1 76 (28%) 33 (12%) 26 (13%)

0 103 (39%) 15 (6%) 11 (6%)

Mean 1.06 2.03 2.00

SD 1.04 .86 .85

Note. The percentage listed is the percentage of the total number of lessons in the type-of-task category 
(i.e., out of 267 lessons with PSS tasks and out of 193 lessons with non-PSS tasks).
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with non-PSS tasks in the distribution of the quality of attention to the MR  
(z = 0.37, p = .71).

Given that the quality of the attention to mathematical relationships tends to be 
higher than the quality of the attention to the contextual features, one might wonder 
if high-quality attention to mathematical relationships occurs at the expense of 
attention to contextual features. The cross-tabulation of scores for CF and MR given 
in Table 4 shows that this does not appear to be the case. In fact, scores for CF and 
MR are significantly positively correlated (Spearman’s rank correlation, ρ = .142, 
p < .05), meaning that in lessons with PSS tasks, scores for one measure generally 
tend in the direction of scores for the other. Despite that trend, only 18 of the 267 
lessons involve attention to the mathematical relationships and contextual features 
in taken-as-shared ways (i.e., at a level 3 or 4 on both rubrics).

A key aspect of setting up complex tasks is maintaining the cognitive demand of 
the task. Table 5 provides an overview of the extent to which the cognitive demand 
of the task was maintained during the setup. The cognitive demand of the task was 
maintained in the setup in less than half (36.1%) of the lessons. In addition, Fisher’s 
exact test suggests significant differences in maintenance of the cognitive demand 
by Task Potential scores (p < .05). Further, the percentage of lessons in which the 
cognitive demand was maintained during the setup was higher for lessons with 
Task Potential 4 than for lessons with Task Potential 2 or 3. 

We also examined the extent to which teachers maintained the cognitive demand 
while attending to the contextual features and the mathematical relationships of the 
task. Table 6 provides the overall percent of lessons within each MR and CF score 
category in which the lesson received a Setup Maintenance score of decrease. There 
was considerable variation in the percentages of lessons that decreased in cognitive 
demand in relation to attention to MR and CF during the setup. The fact that the 
cognitive demand of the task was maintained in about 55% of the setups in lessons 
with MR scores of 4 (i.e., the cognitive demand of the task was decreased in 44.4% 
of the setups in lessons with MR scores of 4) suggests it is possible to attend to the 
mathematical relationships of complex tasks in taken-as-shared ways without 
decreasing the cognitive demand (see Table 6). Also, the highest percentage of 
lessons with decreases in cognitive demand occurs in lessons in which the attention 
to MR is at a level 2. Lastly, we did not find the same trends in the percentages of 
lessons that decreased in cognitive demand with regard to the score categories for 
CF; the percentages do not differ dramatically by score category and range from 
33.3% to 65.0%. Although setting up a task so that all students have access while 
simultaneously maintaining the cognitive demand is challenging, these findings 
suggest that it is possible.

Relationships Between the Setup and Students’ Opportunities to Learn  
in the Concluding Whole-Class Discussion

Relationships between the setup and Academic Rigor of the Discussion. Here, 
we present the results from our analyses of the relationships between the quality 
of the setup and students’ opportunities to learn in the concluding whole-class 
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discussion. We begin by discussing the results from the models with ARD as the 
outcome (see the full set of results in Table 7). 

First, Maintenance was consistently significant and positively related to ARD 
while controlling for High Potential, MR, CF (where applicable), type of task, and 
district membership (p < .05). 

Second, scores on MR were consistently significant and positively related to 
ARD. Further exploration revealed that there is some variation by model, but  

Table 4
Cross-Tabulation of Contextual Features and Mathematical Relationships for Lessons  
With Tasks With Problem-Solving Scenarios (n = 267 ) 

Contextual features
Mathematical  
relationships

0 1 2 3 4

4 2 1 8 3 2
3 4 8 13 12 1
2 73 53 30 9 0
1 13 12 8 0 0
0 11 2 2 0 0

Table 5
Task Potential With Setup Maintenance (n = 460)

Setup maintenance
Task potential Maintain Decrease Total % maintain

4 43 41 84 51.2%
3 67 123 190 35.3%
2 53 128 181 29.3%
1 3 2 5 60.0%

Totals 166 294 460 36.1%

Table 6
Overall Counts for Contextual Features (CF ) and Mathematical Relationships (MR ) 
Scores With Percentages of Setups With Each Score in Which the Cognitive Demand 
Was Decreased
Score 0 1 2 3 4

N % Dec N % Dec N % Dec N % Dec N % Dec

CF 103 65.0% 76 64.4% 61 59.0% 24 50.0% 3 33.3%

MR 26 0% 59 47.5% 284 74.3% 64 67.2% 27 44.4%
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scores of 3 or 4 were significantly related to an increase in scores on ARD. In 
general, the higher the score on MR, the more likely it is for a lesson to receive a 
higher score on ARD. For example, as shown in Model 2 (which controls for High 
Potential, maintenance of the cognitive demand, type of task, and district member-
ship), if a lesson has a MR score of 3, then the odds of scoring a 3 on ARD are 3.5 
times greater than the odds of scoring a 2 on ARD, as compared to a lesson with a 
score of 1 on MR (p < .05). In other words, if there is evidence that taken-as-shared 
understanding of mathematical ideas is developed in the setup (corresponding to a 
MR score of 3), as opposed to only the teacher describing mathematical ideas to 
the students (MR score of 1), then the odds that the concluding whole-class discus-
sion will be characterized by conversation in which students are providing some 
evidence for their reasoning (ARD score of 3) are 3.5 times the odds of the occur-
rence of a show-and-tell form of discussion (ARD score of 2). In addition, for a 
lesson with a MR score of 4, the odds of scoring a 3 on ARD are 9.25 times greater 
than the odds of scoring a 2 on ARD, when compared with a lesson receiving a MR 
score of 1 (p < .001). These results suggest that the quality of the attention to math-
ematical relationships in the setup is crucial—the greater the attention to estab-
lishing a taken-as-shared understanding of mathematical relationships in the setup, 
the stronger the relationship with the quality of the concluding whole-class discus-
sion. 

Third, neither of the models that include CF (see Models 3 and 4) resulted in a 
statistically significant relationship between CF and ARD when controlling for 
High Potential, Maintenance, MR, and district, even when CF was examined by 
score category. 

Fourth, this set of models generally suggests significant differences between 
District A and District C with regard to ARD, which is represented by marginally 
significant coefficients on the dummy variable. This result suggests that there are 
differences between the districts that are not fully explained by differences in High 
Potential or our measured aspects of the setup; however, these differences are not 
the focus of this analysis. 

Finally, results from two of these models suggest that High Potential is positively 
and significantly related to ARD. In other words, the level of challenge of the task 
is related to the quality of the academic rigor of the whole-class discussion. This 
result is consistent with prior research (Boston & Wolf, 2006) and suggests that the 
level of the challenge of the task may set the stage for high-quality discussions.

Relationships between the setup and Student Linking. We next discuss the 
results from the models that explored relationships between aspects of the setup 
and Student Linking (see the full set of results listed in Table 8). Recall that Student 
Linking measures the extent to which students’ contributions link to and build on 
each other in the concluding whole-class discussion. First, we see that Maintenance 
was somewhat consistently significant and positively related to Student Linking in 
the discussion while controlling for the High Potential, MR, CF (where applicable), 
type of task, and district membership. Second, scores on MR were somewhat 
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consistently significant and positively related to Student Linking. Similar to the 
models with ARD as the outcome, the higher scores on MR appeared to drive the 
positive relationship between MR and Student Linking. 

Third, both models that include scores for CF demonstrate marginally significant 
positive relationships between CF and Student Linking when controlling for High 
Potential, Maintenance, MR, and district membership. In Model 3, which included 
one CF score variable, the relationship is marginally statistically significant  
(OR = 1.34, p < .10). In Model 4, the model in which we investigated the differen-
tial impact of CF scores, we specifically see that high CF (i.e., CF scores of 3 or 4) 
is marginally significant and positively related to Student Linking when controlling 
for High Potential, Maintenance, MR, and district membership (OR = 2.78, p < .10 
for CF = 3/4). In other words, if there is evidence that taken-as-shared under-
standing of contextual features is developed in the setup (corresponding to a CF 
score of 3/4), contrasted with no attention to the contextual features (CF score of 
0), then the odds that students will connect their contributions to each other and 
show how they relate two or more times within the lesson (corresponding to a 
Student Linking score of 3) is nearly 3 times higher than the odds of students 
connecting their contributions at most one time (Student Linking score of 2). These 
results generally suggest that developing common language to describe key contex-
tual features of a problem-solving scenario in the setup may help students to make 
connections between their solutions and those of their peers in the concluding 
whole-class discussion. 

Relationships between the setup and Student Providing. Finally, we discuss 
the results from the models that explored relationships between aspects of the setup 
and Student Providing (see the full set of results in Table 9). Recall that Student 
Providing measures the extent to which students support their contributions with 
evidence or reasoning. First, we see that Setup Maintenance was significant and 
positively related to Student Providing in the discussion while controlling for High 
Potential, MR, CF (where applicable), type of task, and district membership. 
Second, scores on MR were consistently significant and positively related to 
Student Providing. Scores of 3 or 4 were significantly related to a score increase 
on Student Providing. In addition, results generally suggest that the higher the score 
on MR, the more likely it is for a lesson to receive a higher score on Student 
Providing. For example, as shown in Model 2, if there is evidence that taken-as-
shared understanding of mathematical ideas is developed in the setup (corre-
sponding to a MR score of 3), as opposed to only the teacher describing mathemat-
ical ideas to the students (MR score of 1), then the odds of scoring a 3 on Student 
Providing are 2.77 times the odds of scoring a 2 on Student Providing (p < .05). In 
addition, for a lesson with a MR score of 4, the odds of scoring a 3 on Student 
Providing are 15.65 times the odds of scoring a 2 on Student Providing, as 
compared to a lesson receiving a MR score of 1 (p < .001). These results suggest 
the greater the attention to establishing a taken-as-shared understanding of math-
ematical relationships in the setup, the stronger the relationship with the extent to 
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which students provide reasoning or evidence for their contributions in the 
concluding whole-class discussion. 

Third, both models that include scores for CF (Models 3 and 4) demonstrate 
significant positive relationships between CF and Student Providing when control-
ling for High Potential, Maintenance, MR, and district membership. In Model 3, 
which included one CF score variable, the relationship is marginally statistically 
significant (OR = 1.31, p < .10). In addition, in Model 4, which investigates the 
differential impact of CF scores, we see that high CF (i.e., CF scores of 3 or 4) is 
significant and positively related to Student Providing when controlling for High 
Potential, Maintenance, MR, and district membership (OR = 3.70, p < .05 for CF 
= 3/4). This odds ratio can be interpreted to suggest that if there is evidence that 
taken-as-shared understanding of contextual features is developed in the setup 
(corresponding to a CF score of 3 or 4) as opposed to no attention to the contextual 
features (CF score of 0), then the odds that students will provide conceptual 
evidence for their claims (Student Providing score of 3) are about 3.7 times the 
odds that students will provide at best procedural evidence in the concluding whole-
class discussion (Student Providing score of 2).

More generally, our primary analyses indicate that the maintenance of the cogni-
tive demand, attention to the mathematical relationships of the task, and attention 
to the contextual features of the task (particularly in taken-as-shared ways) are all 
positively related to Student Linking and Student Providing in the concluding 
whole-class discussion. Examining the outcomes of Student Linking and Student 
Providing reveals that attention to the contextual features during the setup may 
positively relate to the way students build on each other’s contributions and provide 
conceptual explanations during the discussion. 

Limitations of the Study
Before turning to a discussion of our findings, we acknowledge several limita-

tions of this study. First, as noted earlier, our findings are descriptive in nature. 
Given our data and methods of analysis, we are unable to assert causality. Although 
we detected a relationship between the nature of activity in the setup and in the 
concluding whole-class discussion, based on our primary analyses, we cannot claim 
that what happened in the setup necessarily influenced what happened in the 
concluding discussion. There are likely unobserved (or unmeasured) aspects of 
instruction that might account for the relationships we detected between the setup 
and students’ opportunities to learn in the concluding whole-class discussion. For 
example, we do not know if what was observed during the setup and concluding 
whole-class discussion phases of the observed lessons were purely the results of 
norms the teacher had established over the course of the school year, rather than 
anything particular to the setup phase of instruction. Given our relatively small 
number of observations per teacher, we were unable to robustly examine a model 
with teacher fixed effects to rule out the possibility that other characteristics of the 
participating teachers contributed to our significant findings. In the future, similar, 
larger scale studies should use teacher fixed effects to help rule out such alternate 
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hypotheses and strengthen the causality argument.
Second, the questions we asked of our data, and therefore our findings, generally 

assumed a three-phase lesson structure. Although investigating variability within 
lesson structures is beyond the scope of this study, it is important to note that 
although teachers were asked to include a whole-class discussion, not all did. Also, 
teachers spent varied amounts of time on the setup versus other phases of instruc-
tion. Although we collected data on time spent on various phases of instruction, we 
did not analyze it for the purpose of this study. 

Third, we did not investigate the relationship between the setup and the second 
phase of instruction (when students work on solving the task). In fact, the evidence 
of whether a setup is productive in terms of supporting students’ participation is 
probably best determined by analyzing what happens when students start to solve 
the task. However, we were unable to systematically examine students’ activity in 
phase two of the lessons because of the nature of the video data. At the start of the 
research project, it was assumed that the video recordings would be coded by the 
standard IQA, which attends to phase two in a global manner (e.g., whether the 
teacher and students reduce the cognitive demand of the task as students work to 
solve it). The teacher wore a lapel microphone, and the videographers were 
instructed to place a paddle microphone by one or two groups of students to capture 
the nature of their talk during phase two. In order to reliably compare activity in 
the setup to student talk and activity during phase two, we would have needed 
access to all of the students’ talk and activity during that phase of instruction. 

Fourth, given the nature of the data collection, we were not privy to what had 
happened before (or after) the 2 days of instruction. It is possible that a teacher may 
have established key understanding of the context or mathematical ideas in a prior 
lesson, and therefore did not need to spend time setting those up in the lesson that 
was video recorded. In fact, we asked that coders indicate whether there was 
evidence that aspects of the context might have been developed in prior lessons; 
coders only indicated this in 29 of the 267 lessons with tasks with PSS. However, 
this was not checked for reliability, and hence we did not account for this in the 
study. We also did not attend to the nature of the mathematical topic of the specific 
lessons that were recorded. Instead, we only asked that coders identify whether a 
task had a problem-solving scenario. It could be that what is useful to setup for a 
task varies by mathematical topic.

Discussion and Conclusion
Stein and colleagues (Stein et al., 1996, Stein & Lane, 1996) identified that the 

setup phase of instruction could influence the extent to which students participate 
in high-cognitive-demand activity over the course of a lesson. This study contributes 
to the mathematics education research community’s understanding of the nature of 
teacher−student interactions during the setup phase of instruction that might support 
more students to substantially participate in and learn through cognitively 
demanding activity in the classroom, especially in the concluding whole-class 
discussion. 
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Our findings suggest that the quality of the setup appears to be related to students’ 
opportunities to learn in the concluding whole-class discussion. First, we found 
that the quality of the attention to mathematical relationships in the setup was 
generally positively related to the quality of the concluding whole-class discussion. 
In particular, engaging in activity aimed at establishing taken-as-shared under-
standing of mathematical relationships in the setup was more strongly (and 
significantly) related to the quality of the discussion than low-quality attention to 
the mathematical relationships in the setup. Furthermore, establishing taken-as-
shared understanding of mathematical relationships in a consistent manner was 
more frequently related to the quality of the discussion than doing so less consis-
tently. This suggests the importance of not only attending to the mathematical 
relationships in the setup, but doing so in ways that support students to build upon 
one another’s ideas. In other words, it is not enough to have students share their 
isolated ideas about mathematical relationships in the setup. It appears that some 
orchestration of discussion (Stein et al., 2008) of those key mathematical relation-
ships is also desirable in the setup. 

Second, we found positive relationships between the quality of the setup and the 
quality of the concluding whole-class discussion regardless of whether the task 
included a problem-solving scenario. In other words, even in cases where the task 
did not include a scenario, we detected positive associations between attending to 
the mathematical relationships of the task in taken-as-shared ways in the setup and 
the quality of the concluding discussion. 

Some of our initial interest in investigating the setup was prompted by prior 
research that has suggested equity concerns in terms of the cultural suppositions 
of situations used in problem-solving scenarios (Ball et al., 2005; Boaler, 2002; 
Silver et al., 1995; Tate, 1995), as well as our experiences observing instruction in 
which it was evident that not all students were familiar with the contextual features 
of the scenario. A key question is: When a lesson includes a task with a problem-
solving scenario, how is attention to the contextual features in the setup related to 
students’ opportunities to learn in the concluding whole-class discussion? We did 
not detect a statistically significant relationship between contextual features and 
the Academic Rigor of the Discussion. However, we did detect statistically signif-
icant relationships between high-quality attention to contextual features and the 
nature of student contributions (i.e., Student Linking, Student Providing) in the 
concluding whole-class discussion, when controlling for Mathematical 
Relationships, High Potential, Setup Maintenance, and district membership. In 
other words, our findings suggest that students were more likely to make connec-
tions to one another’s ideas and to provide conceptual evidence for their reasoning 
in the whole-class discussion when taken-as-shared understanding of the contextual 
features of the problem-solving scenario was established in the setup. 

An important, related finding of our study was that in lessons with problem-
solving scenario tasks, teachers were more likely to attend to the mathematical 
relationships than the contextual features, and in higher quality ways. There was 
no attention to the contextual features in 39% of lessons with problem-solving 
scenario tasks, while only 6% of those lessons lacked attention to mathematical 
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relationships. Additionally, we found statistically significant differences in the 
distribution of quality of attention to the two features, with a higher mean for 
Mathematical Relationships. Even with these differences, high-quality attention to 
either aspect was relatively rare. Given that we found that high-quality attention to 
contextual features is positively related to students’ contributions in the whole-class 
discussion, it seems important to research this phenomenon further. For example, 
how do teachers conceive of the contextual features of a problem-solving scenario? 
How does their thinking about the contextual features relate to their mathematical 
goals for the lesson?

In general, when teachers and students attended to contextual features and math-
ematical relationships in taken-as-shared ways and maintained the high cognitive 
demand of the task in the setup, discussions were of higher quality. A key question 
to ask is: How likely is it that setups meet these conditions? We found that the 
percentage of lessons (about 6.7%) in which these conditions were met was low. 
Although it was rare, a noteworthy finding of our study is that teachers can develop 
taken-as-shared understanding of contextual features and mathematical relation-
ships in the setup and maintain the cognitive demand of an activity. We view it is 
as valuable to have found evidence that it is possible to do both. 

A related finding is that in our sample of 165 teachers, it was very common for 
the cognitive demand of a task to be lowered during the setup phase of instruction 
(in 294 of 460 lessons, or 64%). This is concerning given that the cognitive demand 
of an activity is a significant predictor of students’ opportunities to learn (Stein & 
Lane, 1996). Stein et al. (1996) suggested three reasons why teachers might lower 
the cognitive demand of a high-level task in the setup: their goals for instruction, 
their subject matter knowledge, or their knowledge of their students. We suggest 
that further research is necessary to elaborate and specify the conditions not only 
in which teachers lower the cognitive demand, but also the conditions in which 
they maintain the cognitive demand of an activity in the setup. What does that 
teaching look like? How do teachers who maintain the cognitive demand conceive 
of their mathematical goals in the setup? What role does mathematical knowledge 
for teaching (Hill et al., 2004) play in the extent to which teachers maintain the 
cognitive demand of classroom activity? How might teachers’ views of their 
students’ mathematics capabilities impact how they set up tasks and the extent to 
which they maintain the cognitive demand of activity over the course of the lesson 
(Garrison, 2011)? Answers to questions like these would go some way toward 
informing the design of professional development with the potential to support key 
shifts in teachers’ practice aimed at maximizing the extent to which all students are 
engaged in rigorous mathematical work. 

A motivation for this study was to contribute to the specification and elaboration 
of ambitious mathematics teaching. Based on findings from this study, we are 
suggesting that setting up tasks is a high-leverage practice. However, in order to 
support teachers in developing this form of practice, it would be necessary to fully 
describe what setting up tasks in high-quality ways includes. Specifically, it 
requires the decomposition of the practice of setting up tasks, which involves 
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making “visible the grammar of practice to novices and may require a specific 
technical language for describing the implicit grammar and for naming the parts” 
(Grossman et al., 2009, p. 2069). We view our work on delineating four key aspects 
of setting up tasks as making significant headway toward the decomposition of this 
practice. However, more research is needed to describe the “grammar of practice” 
in detail sufficient to support teachers in both analyzing and enacting the practice. 
Part of this work involves providing images, or representations, of the practice of 
setting up tasks. We provided one such image in our description of Mr. Smith’s 
setup. Based on our viewing of numerous setups, we are fairly confident that there 
are multiple ways in which one might set up a task that reflect the key aspects we 
identified in our study. However, research would be necessary to more systemati-
cally develop a set of images that could serve as a foundation for “describing the 
implicit grammar” of setting up tasks.

It is worth reminding the reader that our study was particular to middle-grades 
mathematics teachers working in districts that had adopted ambitious goals for 
students’ learning and provided teachers with reform-oriented curricula, as well as 
other supports. It is likely that the setup is particularly important when using 
curricular materials aimed at supporting students to engage in cognitively 
demanding activity. In other words, it may not be necessary to focus as intently on 
the setup if the goals of instruction are only to support students in developing 
procedural understanding of mathematics. With the recent adoption of the Common 
Core State Standards (National Governors Association Center for Best Practices 
& Council of Chief State School Officers, 2010) across most states, which empha-
size conceptual understanding and procedural fluency in a range of domains, and 
the development of more cognitively demanding state mathematics assessments, 
we anticipate that the setup phase of instruction will be of importance if teachers 
are to engage students in commensurate activity in the classroom. 

In closing, we view what happens in the setup phase of instruction as important 
for students’ opportunities to engage in rigorous mathematical activity. Our data 
suggest that this is a phase of instruction that is not often carefully attended to in 
middle-grades mathematics teaching, yet appears to be related to the extent to 
which students are able to participate in concluding whole-class discussions in 
high-quality ways. More generally, we view this type of analysis—one that is 
generated from observations of teachers’ practice and aimed at making visible 
forms of practice that teachers can develop to support all students’ participation—
as necessary to specify how to accomplish ambitious teaching in classrooms.
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