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Research investigating algebra students’ abilities to generalize and justify suggests
that they experience difficulty in creating and using appropriate generalizations and
proofs. Although the field has documented students’ errors, less is known about what
students do understand to be general and convincing. This study examines the ways
in which seven middle school students generalized and justified while exploring
linear functions. Students’ generalizations and proof schemes were identified and cate-
gorized in order to establish connections between types of generalizations and types
of justifications. These connections led to the identification of four mechanisms for
change that supported students’ engagement in increasingly sophisticated forms of
algebraic reasoning: (a) iterative action/reflection cycles, (b) mathematical focus, (c)
generalizations that promote deductive reasoning, and (d) influence of deductive
reasoning on generalizing.

Key words: Algebra; Conceptual knowledge; Constructivism; Middle grades, 5–8;
Learning; Patterns/relationships in mathematics; Proof; Qualitative methods 

Generalization and justification are considered essential components of algebraic
activity (Blanton & Kaput, 2002; Reid, 2002; Steffe & Izsak, 2002). Researchers
have argued that students should develop general connections early as a founda-
tion for algebraic understanding (RAND Mathematics Study Panel, 2002; Steffe
& Izsak, 2002), which has led to a wealth of studies focused on the promotion of
generalizing activities (Blanton & Kaput, 2000, 2002; Carpenter & Franke, 2001;
Carpenter & Levi, 2000; Schliemann, Carraher, & Brizuela, 2001) and to the publi-
cation of curricula geared toward promoting generalizing activities (Coxford et al.,
1998; Lappan, Fey, Fitzgerald, Friel, & Phillips, 1998; McConnell et al., 1998). The
growing focus on generalization reflects the belief on the part of researchers that
“generalization and formalization are intrinsic to mathematical activity and
thinking—they are what make it mathematical” (Kaput, 1999, p. 137).
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Similarly, students’ ability to justify their generalizations has been linked to what
it means to reason algebraically (Curcio, Nimerofsky, Perez, & Yaloz, 1997; Petocz
& Petocz, 1997; Reid, 2002). Blanton and Kaput (2002) argued that “justification
in any form is a significant part of algebraic reasoning because it induces a habit
of mind whereby one naturally questions and conjectures in order to establish a
generalization” (p. 25). Although proof has not historically been a strong focus in
algebra, it has garnered more emphasis in recent curricular suggestions (Andrew,
1995; Epp, 1998; Fitzgerald, 1996; NCTM, 2000). These changes reflect the notion
that developing students’ understanding of justification in middle school, even at
rudimentary levels, may ease the transition to more advanced views of proof in
secondary school (Knuth & Elliott, 1998).

Studies investigating algebra students’ abilities to generalize and justify, however,
suggest that students experience difficulty both recognizing and creating correct
general statements and proofs (Chazan, 1993; English & Warren, 1995; Kieran,
1992; Knuth, Slaughter, Choppin, & Sutherland, 2002; Lee & Wheeler, 1987).
Examinations of students’ work with pattern activities in algebra show that although
students recognize multiple patterns, they may not attend to those that are alge-
braically useful or generalizable (Blanton & Kaput, 2002; English & Warren,
1995; Lee, 1996; Lee &Wheeler, 1987; Orton & Orton, 1994; Stacey, 1989). These
studies highlight students’ tendency to focus on recursive rather than functional rela-
tionships, which presents obstacles toward generalizing the arbitrary case (Blanton
& Kaput, 2002; Pegg & Redden, 1990; Schliemann et al., 2001; Szombathely &
Szarvas, 1998). In addition, the perception of a valid number pattern has not been
shown to guarantee the ability to generalize that pattern correctly (English &
Warren, 1995; Orton & Orton, 1994; Stacey & MacGregor, 1997). Furthermore,
even when students are able to generalize a pattern or a rule, few are able to explain
why it occurs (Coe & Ruthven, 1994). In fact, the wealth of studies investigating
students’ conceptions of proof demonstrate that middle and high school students
overwhelmingly rely on examples to justify the truth of statements (Coe & Ruthven,
1994; Koedinger, 1998; Knuth et al., 2002; Usiskin, 1987). 

Although research has documented students’ difficulties with both generaliza-
tion and justification, few have devoted significant attention to the interplay between
them. Sophisticated algebraic reasoning, however, depends on deep involvement
in both activities. As Lannin (2005) stated, “Further examination of the connection
that students see between their generalizations and justifications is important
because these two components are closely linked” (p. 232). Certainly, the ways in
which students generalize will influence the tools that they can bring to bear when
justifying their general statements. If a student creates a generalization based solely
on empirical patterns, it would not be surprising if her proof were limited to the use
of specific examples. In contrast, a student who generalizes from attending to the
quantitative relationships (Thompson, 1988) in a problem might have a better
chance of producing a more general argument in her justification. Helping students
develop their own algebraically powerful generalizations will likely aid in their abil-
ities to construct appropriate proofs.
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Furthermore, the connection between generalization and justification is bidirec-
tional— engaging in acts of justification may be as likely to influence students’ abil-
ities to generalize as the other way around. Learning mathematics in an environ-
ment in which providing justifications for one’s generalizations is regularly expected
can promote the careful development of generalizations that make sense and can
therefore be explained. A classroom focus on justification could also encourage
students to conjecture in order to establish generalizations (Blanton & Kaput,
2002). Otte (1994) agreed, emphasizing that one role of proof should be to aid in
generalization: “A proof is also expected to generalize, to enrich our intuition, to
conquer new objects, on which our mind may subsist” (p. 310). A focus on justi-
fication may help students not only better establish conviction in their generaliza-
tions but also aid in the development of subsequent, more powerful generalizations.

Because both generalizing and justifying can influence the development of the
other, it is important to understand the nature of this interrelated development; an
examination of these relationships was the aim of this study. Students’ general-
izations were categorized into a taxonomy (Ellis, in press), and their justifications
were categorized according to Harel and Sowder’s (1998) taxonomy of proof
schemes. Qualitative analyses of students’ generalizations, justifications, and the
links between them led to the identification of four mechanisms for cognitive
change that supported students’ engagement in increasingly sophisticated forms of
algebraic reasoning. This article discusses the four mechanisms for change and the
nature of their interaction. 

THE ACTOR-ORIENTED APPROACH
TO GENERALIZATION AND JUSTIFICATION

Although much of the current research examining students’ ability to generalize
defines a generalization as a mathematical rule about relationships or properties
(Carpenter & Franke, 2001; English & Warren, 1995; Lee, 1996), researchers have
historically approached generalization from a number of different perspectives.
Generalization as the creation of a rule is similar to Peirce’s (1878) notion of
induction, but it has also been described as the identification of commonalities
(Dreyfus, 1991; Kaput, 1999), which shares some features of traditional views of
lateral transfer (Anderson, Corbett, Koedinger, & Pelletier, 1995; Bassok &
Holyoak, 1993). Generalization has also been viewed as the process of extending
or expanding one’s range of reasoning beyond the case or cases considered
(Dubinsky, 1991; Harel & Tall, 1991), which has been connected to the process of
abstraction (Piaget, 2001). Kaput (1999) described generalization as “lifting the
reasoning or communication to a level where the focus is no longer on the cases or
situations themselves, but rather on the patterns, procedures, structures, and the rela-
tions across and among them” (p. 137).

An increasing number of researchers have also explored how generalization is
distributed across multiple agents set in a specific social and mathematical context
(Davydov, 1990; Jurow, 2004; Lobato, Ellis, and Muñoz, 2003). For instance, Reid
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(2002) suggested that generalization should be viewed as a collective construct,
whereas others argue that generalization cannot be considered in absence of the
social, historical, and mathematical context in which it occurs (Dreyfus,
Hershkowitz, & Schwarz, 2001; Radford, 1996; Tuomi-Gröhn & Engeström,
2003). These approaches represent a move away from a view of generalization and
transfer as an individual, cognitive phenomenon (Greeno, Smith, & Moore, 1993),
which could fail to take into account other material, cultural, and social agents.

In response to the limitations of traditional views of transfer (described by
Singley & Anderson, 1989), in which transfer is the application of knowledge
learned in one situation to another situation, Lobato (2003) developed the actor-
oriented transfer perspective. Actor-oriented transfer is a framework that advocates
for a shift from the observer’s orientation to the actor’s orientation when studying
processes of transfer. Under this framework, the researcher abandons normative
notions of what should count as transfer and instead seeks to understand the
processes by which learners generate their own relations of similarity, regardless
of their correctness. This allows the knowledge that is generalized to become an
object of investigation; when no longer constrained by predetermined criteria for
what should constitute transfer, the researcher is free to focus on what appear to be
salient features from the student’s point of view. 

Traditional transfer models employ a static metaphor, in which knowledge is
viewed as unchanged during transfer. This metaphor, however, fails to account for
cases in which students actively transform their environments into something
similar to a known situation (Bransford & Schwartz, 1999; Lobato & Siebert,
2002). In contrast, the actor-oriented perspective views transfer as a dynamic
process of creating relations of similarity. Evidence of transfer is therefore provided
by either scrutinizing a given activity for any indication of influence from previous
activities or by examining how students construe situations as similar (Lobato, in
press). By viewing transfer as a dynamic, student-centered process distributed
across multiple agents, the actor-oriented perspective provides a mechanism to
explain how features of instructional environments may influence students’ gener-
alizating (Lobato et al., 2003).

Generalization Taxonomy

Ellis’ (in press) generalization taxonomy extended the actor-oriented perspective
to describe the different types of generalizations that students create when reasoning
algebraically. In the spirit of Kaput’s (1999) view, generalization is defined as
engaging in at least one of three activities: (a) identifying commonality across cases,
(b) extending one’s reasoning beyond the range in which it originated, or (c)
deriving broader results from particular cases. The actor-oriented perspective
guided the development of this definition in two ways. First, generalization is
viewed as a dynamic rather than a static process. Second, evidence for generaliza-
tion is not predetermined but instead is found by identifying the similarities and
extensions that students perceive as general. This view deviates somewhat from the
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typical approach to generalization in which a formal verbal or algebraic descrip-
tion of a correct rule is required as evidence of generalization (Orton & Orton, 1994;
Stacey & MacGregor, 1997). Ellis’ generalization taxonomy emerged from a view
that acknowledges the importance of mathematical correctness but also values the
need to understand what students themselves see as general.

The taxonomy accounts for multiple levels of generalizing and distinguishes
between students’ activity as they generalize, called generalizing actions (see
Figure 1), and students’ final statements of generalization, called reflection gener-
alizations (see Figure 2). Generalizing actions fall into three major categories. When
relating, students form an association between two or more problems, situations,
ideas, or mathematical objects. They relate by recalling a prior situation, inventing
a new one, or focusing on similar properties or forms of mathematical objects. When
searching, students engage in a repeated mathematical action, such as calculating
a ratio or locating a pattern, in order to locate an element of similarity. Students focus
on relationships, procedures, patterns, or solutions when searching. Finally,
extending involves the expansion of a pattern, relationship, or rule into a more
general structure. Students who extend widen their reasoning beyond the problem,
situation, or case in which it originated.1

Reflection generalizations represent one’s ability to either identify or use an
existing generalization. They are final statements of generalization (verbal or
written) or the use of the result of a prior generalization. Students’ statements of
generalization take the form of identifications or statements of general patterns, prop-
erties, rules, or common elements. They also include definitions of classes of
objects, in which students make statements conveying the fundamental character
of a pattern, relationship, class, or other phenomenon. In addition, cases in which
students implement previously developed generalizations in new problems or
contexts are also categorized as reflection generalizations under the third subcate-
gory, influence. Although the three categories of generalizing actions could be
viewed in a hierarchical manner because of the increasingly goal-oriented nature
represented by movement from Type I (relating) to Type II (searching) to Type III
(extending), the three categories of reflection generalizations are not necessarily hier-
archical.2

Proof Schemes

Harel and Sowder’s (1998; Harel, 2006) framework for identifying students’ proof
schemes is also compatible with the actor-oriented perspective, in that the frame-
work does not represent a researcher’s or mathematician’s classification of proof
content or proof method. Instead it categorizes students’ individual schemes of

1 Although the definition of generalization stated above guided the type of student actions that consti-
tuted evidence of generalizing, the categories of generalizing actions do not mirror the definition. Instead,
these categories identify a broad range of student actions while generalizing.

2 For a full description of the taxonomy, see Ellis (in press).
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doubts, truths, and convictions. Defining proving as a process of removing or
creating doubts about the truth of an observation, Harel and Sowder distinguish
between ascertaining, in which one removes his or her own doubts, and persuading,
in which one removes others’ doubts. The processes of ascertaining and persuading
are compatible with the notion of justification as discussed in this article. In a manner
consistent with the actor-oriented view, the framework seeks to identify what
students viewed as convincing: “A person’s proof scheme, therefore, is deter-
mined chiefly by what constitutes ascertaining and persuading for that person”
(Harel, 2006, p. 3).

Five proof schemes in Harel and Sowder’s framework applied to the students in
the study reported here (see Figure 3). The first two proof schemes, authoritarian
and symbolic, fall under the external conviction family. Under these schemes,
conviction is obtained by the word of an authority, or the symbolic form of an argu-
ment. Under the empirical family of proof schemes, conjectures are validated or
invalidated by specific cases (inductive) or sensory experiences (perceptual). The
final proof scheme, called transformational, falls under the deductive category
because it includes the validation of a conjecture by means of logical deductions.

The results reported in this article rely on both the generalization taxonomy and
the taxonomy of proof schemes. Students’ generalizations and justifications were
identified and coded according to the taxonomies so that relationships between types
of generalizations and types of justifications could be identified.

METHODS

The data reported in this article were gathered in a teaching experiment (Cobb
& Steffe, 1983) that occurred at a public middle school located near a large south-
western city. The school had an ethnically diverse population; out of its 1,000
students, approximately 40.8% were Hispanic, 28.2% were Caucasian, 16.7%
were Filipino, 6.9% were African American, 6.3% were Asian American, 0.7% were
Pacific Islander, and 0.4% were American Indian. Approximately 15% of the
students were English language learners.

Participants

Seventh-grade prealgebra students (age 12) were recruited on the basis of will-
ingness to participate in supplemental mathematics lessons, regular classroom
attendance, ability to verbalize their thought processes, and grades of C or higher
in their mathematics classes. A sample of students who demonstrated an interest
in mathematics and an ability to articulate their thoughts was important to the
success of the teaching experiment; given the study’s goal of tracking students’
developing generalizations and justifications, the participants needed to be able
to make new connections and describe their thinking. Every student who volun-
teered for the study was accepted, which resulted in a sample of 6 females and 1
male. Three students were Hispanic, 3 were Caucasian, and 1 was Asian-American.
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One student was an English language learner. Gender-preserving pseudonyms were
used for all participants.

The Teaching Experiment

All class sessions during the teaching experiment were videotaped and transcribed.
The sessions, which occurred on 15 consecutive school days for 1.5 hours each day,
were taught by the author and observed by an assistant who operated the video
camera and took detailed field notes. Each session was followed by a 30-minute
individual interview with one student, resulting in two interviews per student for
the duration of the teaching experiment. The interviews sought to probe more
deeply into what students might have generalized or how they might have under-
stood particular concepts addressed on that particular day. The interviews were also
videotaped and transcribed. 

The goal of the teaching experiment was to explore the ways in which general-
izing and justifying activities are related to one another as students meaningfully
engage with new mathematical ideas. Grounded in the belief that meaningful
engagement can be supported by reasoning with quantitative referents (Thompson,
1988), the sessions focused on exploring linear relationships in two real-world situ-
ations: gear ratios and speed. For the first 7 days, the students worked with phys-
ical gears to explore gear ratios. For the remaining 8 days, the students worked with
the speed simulation computer program SimCalc Mathworlds (Roschelle & Kaput,
1996), with which students could generate and test conjectures about how different
combinations of distance and time affected the characters’ walking speed.

One aim of the sessions was to help students build from situations in which they
could reason quantitatively to develop linearity, rather than inferring linearity from
empirical evidence. The learning goals of the teaching experiment therefore included
the development of multiplicative ratios, the creation of an emergent linear quan-
tity as the ratio of two initial quantities, and the identification of linear situations
as those that have constant ratios. Figure 4 provides an overview of the topics and
ideas addressed during the teaching experiment, and Figure 5 provides a sample of
the types of problems that students encountered.

Data Analysis

Analysis of the data followed the interpretive technique in which the categories
of types of generalizations were induced from the data (Glaser & Strauss, 1967;
Strauss & Corbin, 1990). Transcripts of the lessons and interviews were first coded
via open coding, in which instances of generalization were identified as they fit the
definition of engaging in at least one of three activities: (a) identifying common-
ality across cases, (b) extending one’s reasoning beyond the range in which it orig-
inated, or (c) deriving broader results from particular cases. Through multiple
passes through the data set, categories of types of generalizations emerged, were
tested and modified, and were ultimately formalized into the taxonomy outlined in
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Figures 1 and 2. All of the detected generalizations were ultimately coded with the
final taxonomy. 

Review of the entire data set revealed major trends in the growth of students’
generalizing. Early in the sessions, students focused on generalizing from imme-
diate relationships between quantities, whereas in the later sessions, they general-

Day Mathematical topics Class activities Context

11 Coordinating quantities Finding ways to keep track of 
simultaneous rotations of 
different-sized gears

12 Relating teeth to rotations; Determining how to relate the 
inverse relationships turns of a gear with 8 teeth 

to a gear with 12 teeth

13 Constructing ratios; Finding relationships between 
constant ratios in non- 8/12/16 gears; determining if 
uniform tables rotation pairs come from the Gear

same gear pair ratios

14 Connecting y = ax equations Explaining how (3/4)m = b relates 
to the gear situation to both rotations and teeth

15 y = ax + b gear situations Modeling situations in which A 
turns before connecting to B

16 Representing y = ax + b Making y = ax + b tables; 
situations in tables comparing and contrasting to 

y = ax tables 

17 Nonuniform y = ax + b Determining constant ratio from Gear 
tables; isolating quantities y = ax + b tables; who walks faster, ratios/ 
for speed Clown or Frog speed

18 Changing initial quantities Finding as many ways as possible 
without changing the to make Frog walk the same speed 
emergent quantity as Clown 

19 Classes of equivalent ratios Explaining why equivalent ratios 
mean the same speed

10 Constant ratios in non- Determining if Frog went the same 
uniform tables speed, given values in tables

11 Connecting y = ax equations Explaining how (2/3)c = s
to the speed situation represents speed Speed

12 y = ax + b speed situations Modeling situations in which 
and tables Clown starts away from home and 

walks a constant speed; making 
tables to represent y = ax + b

13 Nonuniform y = ax + b Deciding constant speed from 
tables y = ax + b tables

14 Nonuniform y = ax + b Deciding constant speed from tables; 
tables describing y = ax + b speed situations

15 Meaning of linearity Inventing situations involving linear Student 
relationships invented

Figure 4. Overview of the teaching experiment sessions.
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Connected Gears Problem

You have 2 gears on your table, one with 8 teeth and one with 12 teeth. Answer the
following questions:

1. If you turn the small gear a certain number of times, does the big gear turn more revo-
lutions, fewer, or the same amount? How can you tell? 

2. Devise a way to keep track of how many revolutions the small gear makes. Devise
a way to keep track of the revolutions the big gear makes. How can you keep track
of both at the same time?

3. How many times will the small gear turn if the big gear turns 64 times? How many
times will the big gear turn if the small gear turns 192 times?

Frog Walking Problem

The table shows some of the distances and times that Frog traveled. Is he going the same
speed the whole time, or is he speeding up or slowing down? How can you tell?

Distance        Time

3.75 cm 1.5 sec 
7.5 cm 3 sec
12 cm 4.8 sec
15 cm 6 sec
40 cm 16 sec

Figure 5. Sample teaching-experiment problems.

ized across different quantitative situations in order to establish more global rules
about linearity. In addition, students’ justifications evolved over time from those
that were symbolic and empirical to those that were transformational. In attempting
to capture the nature of increased sophistication, students’ later generalizations and
justifications were contrasted to those that they had produced earlier. The four mech-
anisms for change emerged as a way to explain this growth in sophistication.

These mechanisms were therefore not a priori hypotheses but were instead devel-
oped through an examination of the times when students’ generalizations and justi-
fications demonstrated a shift in reasoning. When analyzing students’ justifications,
this meant instances in which students shifted from operating within nontransfor-
mational proof schemes to operating within the transformational proof scheme,
which was the only proof scheme with which students justified by deductive
reasoning. When analyzing students’ generalizations, three criteria were employed
to assess shifts in reasoning (see Ellis, in press): (a) movement from Type I
(relating) to Type II (searching) to Type III (extending) actions, (b) the generation
of new inferences, and (c) support for justifications tied to the transformational proof
scheme. 

The first criterion reflects the increasingly goal-oriented and creative nature of
students’ reasoning as they moved from relating to searching to extending.
Relating represented connections that were often spontaneous or not necessarily
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deliberate or intentional. In contrast, searching was a deliberate action that
involved both the anticipation of the existence of a relation of similarity and the
coordinated effort to locate it. Unlike relating and searching, extending involved
reasoning about objects that were not present, which supported the generation of
new knowledge. 

The second criterion developed because repeated cycles of generalizing produced
new understanding as well as the creation of new ideas. Through generalizing,
students may develop fresh insight into a problem situation. Thus, if the evolution
of a student’s generalizations resulted in attention to a different aspect of a problem,
the creation of a previously undeveloped idea or a more inclusive connection, or
the promotion of a more complex and nuanced understanding, his or her general-
izing activity was considered to have grown in sophistication.

The final criterion represents the belief that generalizations for which students
can provide justifications via the transformational proof scheme will reflect more
sophisticated knowledge than generalizations for which students cannot provide
such arguments. Because transformational justifications often emerged over time,
it was possible to examine the types of generalizations that ultimately supported
those justifications once they emerged. Given the importance of both generalizing
and justifying in promoting students’ algebraic development, an emphasis was
placed on connecting these activities whenever possible throughout the teaching
experiment. The generalizations that the students could justify via the transforma-
tional proof scheme turned out to be the ones that were robust and well connected
to other knowledge. 

Once shifts in students’ reasoning were identified, the data were then examined
to determine the sources of those shifts. Drawing on the constant comparative
method (Glaser & Strauss, 1967), conjectures for those sources were developed and
revised against new analysis passes. This process led to the four mechanisms
discussed below.

RESULTS

The four mechanisms for change are first defined and then illustrated via three
data episodes. The episodes are excerpts from a 2-day session in which students
identified equivalent speed ratios, and then struggled to explain why those ratios
represented the same speed. They form a coherent narrative that demonstrates the
four mechanisms interacting to support increasingly sophisticated generalizations
and justifications. After each episode is presented, a discussion identifies the mech-
anisms that promoted progress in students’ reasoning. 

The Four Mechanisms for Change

Results from the teaching experiment suggest that relationships between gener-
alizing and justifying were rarely self-contained. Namely, the students did not gener-
alize in one way, provide a particular type of justification for that generalization,
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and then move on. Instead, students built on their prior generalizing and justifying
activity in ways that revealed generalizations of an increasingly sophisticated
nature over time. Correspondingly, students’ justifications grew more sophisticated
as well. The four mechanisms emerged as a way to describe the manner in which
generalizing and justifying mutually influence one another to support the devel-
opment of more sophisticated reasoning.

Mechanism 1: Action/Reflection

Students demonstrated iterative action/reflection cycles: They engaged in partic-
ular generalizing actions, formalized them as reflection generalizations, and then
moved on to new generalizing actions. Although students’ initial generalizing
actions and associated reflections were frequently limited or even incorrect, subse-
quent cycles built on previous attempts to develop more sophisticated generaliza-
tions. This action/reflection cycle of generalizing constitutes the first mechanism.
The action/reflection mechanism works in concert with the other three mechanisms
to account for how generalizing and justifying can mutually influence the devel-
opment of the other.

Mechanism 2: Focus

The mathematical aspects of the problems on which students focused their atten-
tion affected their generalizing and justifying. The term focus refers to the students’
focus, either individually or collectively, rather than the mathematical focus engi-
neered by the teacher or a particular problem situation. For example, all the prob-
lems introduced in the teaching-experiment sessions reflected an attempt to place
students in quantitatively rich situations. The hope was that the students would
explore which quantities affected particular attributes, such as speed and gear
ratios, and ultimately develop an understanding of linearity as the constant ratio of
the change in one quantity to the change in another. However, there were times when
students focused their attention exclusively on number patterns divorced from any
quantitative referents. At other times, students attended closely to the quantitative
referents, using them to support their reasoning and explanations.

The data suggest that students’ focus affected both how they generalized and how
they justified. Two relationships between focus and generalizing/justifying emerged.
First, when students focused on number patterns, they demonstrated the general-
izing actions of searching for patterns and extending by continuing, and the reflec-
tion generalizations of statements of principles related to patterns. When an asso-
ciated justification was found, these generalizations were justified with the external
symbolic and empirical proof schemes 71% of the time (20 out of 28). Second, a
focus on quantitative relationships was tied to the generalizing action of searching
for the same relationship, and the reflection generalizations of statements of contin-
uing phenomena and statements of general principles related to quantities.
Associated justifications for these generalizations used the transformational proof
scheme 67% of the time (46 out of 69). These two results suggest that the mathe-
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matical properties to which the students attended served to either inhibit or promote
a growth in sophistication of their reasoning.

Mechanism 3: Generalizations That Promote Deductive Reasoning

The transformational proof scheme was the one proof scheme in which students
validated conjectures by means of logical deductions. Those who operated with the
transformational proof scheme could (a) consider the generality aspects of an obser-
vation, (b) apply goal-oriented and anticipatory mental operations, and (c) transform
mental images as part of their deduction processes (for a complete discussion of the
transformational proof scheme, see Harel & Sowder, 1998). The development of the
transformational proof scheme was one of the aims of the teaching experiment; it
represented a shift away from the belief that it is appropriate to justify conjectures
by means of examples or external authority. This mechanism addresses the types of
generalizing that promoted the transformational proof scheme.

Three types of generalizations were connected to the use of the transformational
proof scheme: (a) the generalizing action of searching for the same relationship (9
out of 18 associated justifications were transformational), (b) the generalizing
action of extending (27 out of 45 associated justifications were transformational),
and (c) the reflection generalization of a statement of a continuing phenomenon (23
out of 31 associated justifications were transformational). Given that the percentage
of transformational justifications as a whole was less than 50 (106 out of 216 coded
instances of justification), the generalizations that were tied to higher rates of the
transformational proof scheme merited special consideration.

Mechanism 4: Influence of Deductive Reasoning on Generalizing

The final mechanism addresses the role of the transformational proof scheme in
promoting more powerful generalizations. This finding suggests that students can
begin with generalizations that may be limited or unhelpful, but after justifying with
the transformational proof scheme, they may subsequently create more accurate,
sophisticated generalizations. Results indicate that the transformational proof
scheme appeared to promote shifts toward two major types of reflection general-
izations: (a) statements of continuing phenomena, demonstrating that this rela-
tionship is bi-directional; and (b) new general principles such as general rules,
patterns, and global rules (23 out of the 30 coded generalizations that followed a
justification with the transformational proof scheme fell into these two categories;
15 were statements of continuing phenomena, and 8 were new general principles).

Episodes on Equivalent Speed Ratios

The three episodes span 2 days in the teaching experiment. They are presented
in narrative form in order to show the mutual influence of generalization and justi-
fication on the evolution of students’ reasoning. The mechanisms of change are
discussed after each episode.
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Episode 1: The Struggle to Explain Equivalent Ratios

This episode demonstrates the influence of the first two mechanisms,
action/reflection and focus. The students began the lesson by working on the
following problem: “Say Clown walks 15 cm in 12 seconds. Find as many
different ways as you can to make Frog walk the same speed as Clown.” Frog and
Clown are characters from SimCalc Mathworlds (Roschelle & Kaput, 1996). The
students broke into two groups, and both groups decided to develop and test same-
speed pairs by running computer simulations. They tested a number of different
pairs on a trial-and-error basis by typing various speeds into the computer and
watching Clown and Frog walk across the screen. The students then created tables
like the one shown in Figure 6.

Larissa, Maria, Dani, and Julie created a shorthand 15:12 unit on their papers.
They first multiplied the 15 cm:12 s unit by 2 to obtain 30 cm in 24 s, and they
then began to multiply the 15:12 unit by other numbers to create other same-speed
pairs. The students engaged in the generalizing action of extending by operating
on the 15:12 unit, because they operated on the pair to create new instantiations
of the ratio. The students then determined that they could multiply the 15:12 unit
by any whole number to obtain a new same-speed pair. This resulted in the
reflection generalization of the definition of a class of same-speed pairs.

Figure 6. Students’ table testing distance/time pairs.
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The students then realized that all multiples of 5 cm in 4 s would work, as
evidenced by Maria’s written comment: “Multiple of 5 & 4 has to be a form of 15
cm & 12 seconds.” Their recognition of the 5 cm:4 s pair likely occurred as a result
of their prior experiences with gears. Every time the students encountered a nonuni-
form table of pairs of gear rotations, they focused on the smallest whole-number
pair they could find in each table. Eventually, they generalized that this pair repre-
sented the gear ratio. The students’ fixation on the smallest whole-number pair, in
combination with other studies showing that students in speed situations do not
behave this way (Lobato & Siebert, 2002; Lobato & Thanheiser, 2000, 2002),
suggests the influence of prior reasoning with gears. If so, we see here another reflec-
tion generalization, the influence of a prior idea on the speed situation. Because the
microphone was not recording the girls’ conversation at this time, there is not enough
evidence to determine if they consciously performed the generalizing action of
relating by connecting back to the gears situation. However, Larissa’s language
below suggests that at least for her, she connected back to the gears. This connec-
tion to the gears situation appeared to help the girls refine their definition of a class
of same-speed pairs to a larger, more accurate class.

Dani clarified the group’s reasoning when the class reconvened as a whole:

Dani: Um, when we figured out that for the thing, it was multiples of 5 and 4.
Teacher: Multiples of 5 and 4. Larissa?
Larissa: Remember when I said that with the gears you switch ’em around and you do

the opposite? For this one it works too. Remember the thing I said where you
do the 6 and the 5 and you switch ’em and you get 5/6,3 and that’s the number?
It works here too.

Larissa was referring to the fact that in every gear table she had seen or created,
one of the pairs always represented the gear ratio in the form of two relatively prime
whole numbers. She mentioned switching the values because if the gear ratio was,
for example, 5/6 (the form students preferred to use, although they understood that
5:6 was equivalent to 1:5/6), then the small gear would rotate six times, while the
big gear turned five times. In such cases, the table entry would read Small: 6 :: Big:
5, which Larissa viewed as the “opposite” of 5/6 and in need of reversing. Thus,
Larissa demonstrated the generalizing action of relating by connecting back to the
gear situation, and she produced the reflection generalization of the identification
of the common property in both types of tables. Although Larissa’s connection is
not mathematically relevant to the phenomena of gear rotations or speed, under the
actor-oriented perspective it constitutes a generalization because Larissa did see a
relevant connection between the two.

Teacher: Oh my gosh. Why?
Larissa: Because it’s, they’re multiples of 4/5.
Julie: Because we found that the original was 12 and 15, okay, so we had to simplify

that to 4/5. And so we know, and we tried out all of the ones that said yes—
were multiples of 4/5.

3 Students pronounced ratios such as 5/6 as “five sixths.”
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Julie’s remark shows that once the students had a list of correct same-speed pairs,
each of which they had designated with a “yes,” they tested whether all of the “yes”
pairs were multiples of 4/5. This represents the generalizing action of searching for
the same relationship, and by pointing out that all of the correct pairs were multi-
ples of 4/5, Julie’s reflection generalization was the identification of the common
property across the correct pairs. They found this to be true in each case in their
table, and the students justified their idea as follows:

Julie: Because the 12 and 15 simplified is 5 and 4.
Larissa: It works because, because it, because this one’s 4 times bigger than this one

and you need to do the opposite on the other ones to get 1.
Teacher: Why?
Larissa: Because you want to make them as equal as possible.
Teacher: What’s 4 times bigger than what?
Larissa: Um, remember when we did that thing with the gears and we had to do the oppo-

site on this one and this one [pointing to the cm and s in the table]? Like we
had to do this one on this one and this one on this one? It’s the same thing here.

Teacher: Why does that work?
Larissa: Because . . . you want to equal them out . . . so that . . . they can . . . this one

[pointing to 4 sec] is 4/5 of this one [pointing to 5 cm]. So if you do 4/5 times
5, you get 4, which is this one [4 sec]. But that doesn’t really help.

The students’ appeal to symbolic rules for calculating equivalent fractions, in
combination with a noticeable absence of any reference to the quantities in the situ-
ation, suggests that they were thinking of the symbols in absence of their connec-
tion to centimeters and seconds. Larissa also appeared to refer to a rule about making
the numbers “equal,” or balancing them out. The students’ struggle in providing
an explanation, combined with their focus on calculational rules rather than quan-
titative relationships, suggests that their proof scheme at this point was the external
conviction symbolic scheme.

Dani then noticed that one of their correct pairs was not a multiple of 4/5:
“Except for this one. 7.5 and 6. That won’t be a multiple.” When asked about this
pair, Dani noted that it was related to the 15:12 pair in a different way:

Dani: You divide the 15 and 12 by 2.
Timothy: Yeah but . . . 
Teacher: So does that fit with your multiples of 5 and 4 idea?
Dani: Yeah, sort of.
Timothy: Oh! You multiply whatever the centimeters are by 4/5 to equal the seconds.

So it doesn’t matter if they’re multiples as long as, if you put the centimeters
over the, or, the seconds over the centimeters it would equal the same as 4/5.

Teacher: So by multiples we don’t necessarily mean whole-number multiples?
Timothy: It doesn’t matter because it could also be fractions.

Timothy produced a reflection generalization, the identification of a general rule,
after hearing Dani’s idea. The students were further pressed to explain why this
worked:

Teacher: Now I have not heard a justification why this works.
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Julie: Because the numbers 12 and 15.
Timothy: 12 over 15 equals 4/5.
Dani: You can simplify and that’s why. You can simplify 15 over 12.
Julie: You can simplify it down.
Teacher: So those are all forms of 12 and 15?
Julie: Yeah. It has to be a form of 12 and 15.
Teacher: Why?
Timothy: I don’t know. It just works!

The students’ struggle to explain Timothy’s general rule remained at the level it was
before. They still referred to symbolic rules for simplifying in absence of the asso-
ciated quantity of speed; thus, they operated from the external conviction symbolic
proof scheme.

Mechanisms for Change for Episode 1

Mechanism 1: Action/Reflection. Students’ generalizing began at a fairly sophis-
ticated level. They engaged in Type III generalizing, extending, when they oper-
ated on the 15:12 pair in order to generate new pairs. This action led to the defini-
tion of a class of same-speed pairs. However, their defined class was incomplete,
containing only whole-number multiples. What occurred next was a second gener-
alization pair, relating by connecting back to the gears situation and the influence
of a prior idea, which led to a larger class of multiples of 5 and 4. Although this
new defined class still does not include all same-speed pairs, it encompasses more
pairs than the students were able to generate originally. Thus, the second
action/reflection pair helped the students generate a more sophisticated notion of
all same-speed pairs.

To check whether their idea about multiples of 5 and 4 was correct, the girls
engaged in the generalizing action of searching for the same relationship across all
of the pairs and were able to identify the property common to the correct pairs. This
action/reflection pair aided in the clarification of the refined class of same-speed
values. The action of searching helped the students solidify their idea about the
refined class, which demonstrates how a different type of generalizing, in this case
searching, can lead to a more sophisticated product, the definition of a larger and
more accurate class of objects.

Finally, Timothy responded to the class discussion with a reflection generaliza-
tion, the identification of a general rule. There is little evidence about what prompted
this general rule for Timothy, but he appeared to react to 7.5 and 6, the one pair that
was not a whole-number multiple of 4/5. Timothy’s general rule could be very
powerful, potentially allowing students to generate a more inclusive class of same-
speed values. However, the students struggled to explain why it worked, operating
under the external conviction symbolic proof scheme.

Episode 1 shows that a path of generalizing in distinct action/reflection pairs
allows students to make new inferences. Although the students began by determining
that multiples of 15 and 12 would result in same-speed values, they ended by real-
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izing that there are more same-speed values than they had originally identified. The
students created a new set of mathematical objects based on the 5:4 pair. By
relating and implementing a prior idea, the students created the larger class, which
culminated in Timothy’s generation of a potentially powerful rule.

Mechanism 2: Focus. Students focused on numbers and patterns, which they
represented in tabular form. This focus allowed them to extend their reasoning by
operating on a same-speed pair and to define a class of same-speed values. However,
given that the students remained focused on numbers in a way that appeared
divorced from the quantities of centimeters and seconds, or the phenomenon of
speed, it is not surprising that they operated within the symbolic proof scheme. The
use of this proof scheme reflected the students’ focus on symbols. Episodes 2 and
3 will demonstrate a change in the students’ focus, which in turn will influence the
type of generalizations and proof schemes they employ.

Episode 2: Timothy Makes Connections to the Quantities

The next day’s problem (see Figure 7) followed up on the previous discussion
by specifically requiring students to justify their reasoning. Timothy drew a graph
(see Figure 8) and asked, “Does this count as a drawing, showing that . . . they’re
going up the same rate?” When asked what he thought, Timothy replied, “It does
because it’s saying like, here’s 15 and 12, and see, Frog can go on any one of these.”
The teacher suggested further questions for Timothy to consider:

Teacher: Why do the points fall in a line?
Timothy: Because no matter what, they’re all going to follow the same rule.
Teacher: What does each point represent?
Timothy: Represents the centimeters per second. Or . . . well, centimeters per second. 2.5

cm per 2 s.
Teacher: So this point represents 2.5 cm in 2 s. What does this point [indicating a

different point] represent?
Timothy: Uh, 20 cm per 16 s.

A. Last time you figured out that multiples of 5 cm in 4 s work. What kind of multi-
ples? Whole-number multiples? Do fractions or decimals work? Explain why multi-
ples of 5 cm in 4 s work to produce a same speed. 

B. Draw a picture of Clown walking 15 cm in 12 s and Frog walking 5 cm in 4 s. Show
how these two scenarios represent the same speed.

C. Draw a picture of Clown walking 5 cm in 4 s and Frog walking 7.5 cm in 6 s. Show
how these two scenarios represent the same speed.

Figure 7. Follow-up justification problem.
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Teacher: So what’s the same about these two points?
Timothy: They’re all the same centimeters per second. The amount of centimeters that

Frog’s gonna run in a certain amount of time.

The line of questioning was designed to explicitly direct Timothy’s attention to
sameness across the points. This likely afforded Timothy’s generalizing action of
searching for the same relationship, because he had to think about what was the
same about the points (2.5, 2) and (20, 16). Timothy then stated that all of the points
represent the centimeters Frog travels in a particular time (centimeters per seconds).
Thus, Timothy generated a reflection generalization in his identification of the prop-
erty common to all of the points.

When asked about the slope of the line, Timothy identified it as 4/5:

Timothy: So that means, since the slope is 4/5, this [gesturing down the y column] is 4/5
of this [gesturing across the x column]. Basically, whatever y is, is 4/5 of what-
ever x is.

Teacher: Oh. And how does that 4/5 slope relate to what you’re figuring out with the
speed?

Timothy: Because let’s see . . . for every centimeter it goes, it’s going like 4, er, yeah 4/5
of a second I think. And it’s the other way around? I don’t know. Every
centimeter goes . . . yeah. Every centimeter it’s going it’s 4/5 of a second. So
. . . for 15 cm, 4/5 of 15 would equal 12. So since there’s 15 cm, 4/5 of 15 cm,
for every centimeter it’s going 4/5 of a second, or 12 s.

Timothy’s first statement that “whatever y is, is 4/5 of whatever x is” represents a
reflection generalization—an identification of a general pattern. When asked to

Figure 8. Timothy’s graph showing same-speed points.
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connect this pattern to the speed, he produced a different reflection generalization.
Timothy’s statement about what happens every centimeter is an identification of a
continuing phenomenon, because he identifies the dynamic relationship between
centimeters and seconds. In addition, he has made a connection between 4/5 and
the notion of walking and speed. The 4/5 pattern now has meaning in terms of the
quantities in the situation.

When the group convened, Timothy shared his ideas with the other students:

Timothy: Since the line was linear, and since we had already figured out that whatever
the amount of centimeters that people walked, that was how many, that was
4/5, 4/5 of that was how many seconds it took. And so the graph’s showing the
different amount of centimeters and different amount of time they could have
taken. And since, as long as you did like one of these [gesturing to the line] or
beyond that, you would always end up having them go along at the same speed.
Because since 15 and 12 is also on that line. And so . . . since 15 and 12 is also
on that line, and you do anything else that’s on that line, you’ll be going at the
same speed. Just one of them will stop at a certain time.

There is some evidence to suggest that Timothy’s reasoning demonstrated the use
of the transformational proof scheme. Given his statement that “you would always
end up having them go along at the same speed” and his explanation that one can
stop elsewhere on the line and still represent the same speed, it appears that Timothy
was transforming images in an anticipatory manner; he could imagine any given
point as representing the given speed. Furthermore, Timothy’s statement that “you
do anything else that’s on the line” suggests that he anticipated that any point on
the line, not just the points that he had drawn from his table, would represent the
same speed.

To explain the meaning of slope to the other students, Timothy communicated
the reflection generalization: “The slope means that whatever x goes up by . . . 4/5
of that is how much y goes up by.” This may appear similar to Timothy’s prior state-
ments, but there is an important difference. He no longer limits his statement to the
fact that y is 4/5 of x or that the seconds are 4/5 of the centimeters. Timothy now
understands that any increase in y will be 4/5 of the same increase in x. This is a
general pattern, as before, but it is a different, more powerful general pattern; it
applies to all linear functions of the form y = mx + b rather than just functions of
the form y = mx.

Mechanisms for Change for Episode 2

Mechanism 1: Action/Reflection. On the previous day, Timothy had identified a
general rule: You multiply the centimeters by 4/5 to get the seconds. By creating
a graph and focusing on what was the same about the points, Timothy’s general-
izing action of searching for the same relationship led to another reflection gener-
alization—the identification of a general pattern: “Whatever y is, is 4/5 of what-
ever x is.” Once he tried to connect this pattern to speed, Timothy realized that for
every centimeter the Frog walked, it took 4/5 of a second. This reflection general-
ization is different from the others. First, it is an identification of a continuing
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phenomenon, so it is stated in a different form. But more important, it was the first
time one of the students stated a connection between the general pattern and the
speed situation. The 4/5 now carried a quantitative meaning for Timothy. Certainly
it might have before, but this was the first time he stated this connection explicitly.
Additionally, his struggle in producing the statement suggests that Timothy was
making the connection as he spoke it.

Another cycle of generalizing and justifying produced Timothy’s final reflection
generalization, the statement of a different general pattern conveying the meaning
of slope. This is arguably more sophisticated than the generalizations that preceded
it, because now Timothy understood that not only is seconds proportional to
centimeters, but the change in seconds in proportional to the change in centime-
ters. This understanding could be more helpful when students later address y = mx
+ b situations, and Timothy may now be better prepared to extend his under-
standing to linear situations that are not directly proportional.

Mechanism 2: Focus. Episode 2 shows how a focus on quantities can result in
generalizations that connect number patterns to situations and to justifications with
the transformational proof scheme. For Timothy, the teacher’s prompt to connect
his general pattern to the speed situation allowed him to create new generalizations,
such as an identification of a continuing phenomenon and a different general
pattern tied to the transformational proof scheme. Before this shift in focus, all of
the students’ reflection generalizations were statements of general principles and
definitions of classes, and the proof schemes associated with their attempts to
justify remained at the external symbolic levels.

Timothy’s attempt to explain why multiples of 4/5 resulted in same-speed values,
rather than justify the fact alone, could have been the catalyst to develop a connec-
tion between his pattern and the quantitative relationship. He responded to three
important questions: (1) Why do the points fall in a line? (2) What does each point
represent? and (3) What is the slope of this line? These questions prompted Timothy
to think about why the slope was 4/5, and why 4/5 was also the pattern and rule that
he had previously identified. He was able to connect the pattern to the relationship
between the y-values and x-values of the points in a way that was general: “Whatever
y is, is 4/5 of whatever x is.” By trying to explain why, Timothy was encouraged
to focus on the relationship between the points in a way that did not depend on a
particular point or pair of values.

Mechanism 3: Generalizations that promote deductive reasoning. Timothy’s
generalizations about the pattern between y and x and its relationship to speed appear
to have been connected to the transformational proof scheme. He was able to logi-
cally deduce, as a result of operating on the constant ratio, that the Clown would
walk 1 cm in 4/5 s. In order to do so, Timothy could have anticipated what the Frog’s
unit rate would have to be, given that the relationship between time and distance
was 4/5. Furthermore, there is evidence that Timothy could appreciate the gener-
ality of the 4/5 relationship, as he was able to state it in several different ways and
with different numeric examples. Although the conclusion that Timothy acted
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with the transformational proof scheme is tentative, it is likely that the ways in which
he generalized afforded such reasoning. Specifically, Timothy’s action of searching
for the same relationship across the points on his graph could have strengthened
his understanding of the invariant multiplicative relationship between centimeters
and seconds. By focusing on this sameness, Timothy may have lifted his reasoning
to a level at which he could think about the relationship between centimeters and
seconds represented by each point.

When Timothy focused on a particular point, such as (2.5, 2), he could explain
its meaning by stating, “This means he went 2.5 cm in 2 s.” However, when he had
to attend to what was the same across two points, such as (2.5, 2) and (20, 16), the
former statement no longer held for both points. What is the same about the first
and the second points? “They’re all the same centimeters per second.” Thus,
Timothy had to think about the relationship between centimeters and seconds in a
general way, considering how each point represented a different instantiation of the
same relationship.

This generalizing action appeared to push Timothy to think about the ratio rela-
tionship in a way that was not dependent on one particular pair, thus encouraging
the consideration of generality. The actions prompted by searching for the same rela-
tionship also supported other aspects of the transformational proof scheme, such
as transforming images in an anticipatory manner in order to predict that any point
on the line would represent the same speed. Similarly, Timothy’s identification of
a continuing phenomenon could have further strengthened his understanding of the
idea that the ratio between centimeters and seconds remains constant as the Frog
continues to move.

Mechanism 4: Influence of deductive reasoning on generalizing. The episode
shows how Timothy’s deductive argument could have enabled the identification
of a new general principle, a general pattern. Although the students had previously
identified general patterns, Timothy’s new general pattern was the first general-
ization that referred to a ratio of increases rather than a direct ratio. Timothy’s atten-
tion to the ratio of increases occurred through the act of explaining how his graph
represented the same speed values. By developing this explanation, Timothy trans-
formed images in an anticipatory manner, which could have encouraged a shift in
focus from the ratio between x and y to the ratio of increases between x and y. The
very act of justifying within the transformational proof scheme afforded the new
generalization. 

Furthermore, through his explanation to the other students about why the graph
demonstrated that the characters walked the same speed, Timothy was able to
develop the new inference. He realized that the ratio of the change in seconds to
the change in centimeters was 4/5, which was represented as the slope of the graph.
In each case, it was through the struggle to explain why multiples of 4/5 resulted
in same-speed values that Timothy was able to develop a deductive argument and
subsequently make new generalizations.
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Episode 3: Larissa and Maria Connect to Quantities

Unlike Timothy, Larissa and Maria did not produce a graph. In the drawing they
shared with the rest of the class (see Figure 9), the top number line represents Frog’s
journey and the bottom represents Clown’s journey. The boxed numbers represent
the number of seconds corresponding to the number of centimeters on each number
line; thus the boxed “4.0” directly above and below the “5” on each number line
shows that at 5 cm, both the Frog and the Clown had traveled for 4 seconds. In the
following dialogue, which occurred prior to Timothy’s explanation, Larissa explains
how their picture showed that Frog and Clown walked the same speed.

Maria: Okay, we figured out that every 8, .8 s, no every second you go .8 cm.
Timothy: I think it’s the other way around.
Dora: Every centimeter you go .8 s.
Timothy: Because that would explain 15 cm, 12 s. Because the smaller amount of

seconds.
Maria: Okay. And, in 4 s the Frog reached 5 cm, and that was the speed of the Clown.

In 12 s, 15 cm. In 8 s, the 10 cm. In 4 s, he reached the 5 cm.
Teacher: Excellent. Now Larissa, can you explain how this picture shows that Frog and

Clown are going the same speed?
Larissa: Because for the, when they’re at 4, both of them are at 4 s. But since the frog

stops, he’s finished. So he’s finished at 4 s. But the clown keeps going and from
0 to 5 it jumped 4 s, from 5 to 10, and from 5 to 10 it also jumped 5 cm and 4
s. And from 10 to 15, it jumped 5 cm and also 4 seconds. So the proportion
stays the same throughout the whole thing even though Frog stopped.

Through the process of developing a picture to justify the same-speed idea,
Maria produced the reflection generalization of an identification of a continuing
phenomenon: For every 1 cm the clown walked, it took 0.8 s. Although Maria
stated it incorrectly, her written work prior to this discussion showed the correct
relationship, which suggests that she misspoke. Thus, Maria produced a new state-
ment about the speed situation, a statement the students had not previously
constructed.

Figure 9. Larissa and Maria’s diagram of Clown and Frog walking.
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Larissa’s explanation reveals elements of the transformational proof scheme,
because she could imagine the Frog completing his journey at the same propor-
tion as the Clown’s completed journey. When subsequently asked if she could
generalize her argument to any two characters walking the same speed, Larissa said,
“The . . . proportion will stay the same. . . . If the two objects are walking the same
speed, then the proportion throughout . . . their walking will stay the same even if
one of the objects stops.” Through discussing the picture and her justification,
Larissa could now state a more general idea. She engaged in the generalizing action
of extending by removing the particulars, because she had extended the idea of
keeping the same proportion to any same speed pair. Larissa had also produced
the reflection generalization that if the speed is the same, the proportion will remain
the same: a global rule.

Mechanisms for Change for Episode 3 and General Discussion

Mechanism 1: Action/Reflection. Maria and Larissa identified generalizations
that they had not previously considered. Maria produced a statement of a contin-
uing phenomenon, and this generalization, like Timothy’s, made sense of the speed
situation where the girls’ prior generalizations did not. It is difficult to ascertain
what actions could have led to this reflection generalization because the only
evidence available is their drawings. Maria’s drawing (see Figure 9) was the
culmination of three attempts. One possibility is that while struggling to create
drawings, the students engaged in the generalizing action of extending by contin-
uing, because they repeated the 5 cm:4 s unit three times on their paper in order
to produce the number lines. In addition, the girls appear to have engaged in the
generalizing action of extending by operating, because their final drawing showed
that they partitioned the number line, which represents centimeters, into 5 equal
parts. In order to partition their drawing, they would have had to mentally parti-
tion the seconds into 4 equal parts, then divide 5 cm by 4 in order to obtain 0.8 cm
for 1 s. Maria marked the .8 cm on the number line, correctly showing at what point
on the number line the Clown had traveled for 1 s. This generalizing action of
extending could have contributed to the reflection generalization of the identifi-
cation of a continuing phenomenon.

One more action/reflection cycle portrays further increased sophistication.
When specifically asked to generalize her argument to any same-speed situation,
Larissa engaged in the action of extending by removing particulars. Her prior gener-
alizing actions, as well as her attempts to provide a reasonable explanation of the
same-speed phenomenon, enabled her to engage in this final action. She was able
to produce an identification of a global rule as a result: If two objects walk the same
speed, the proportion (of distance to time) will remain the same. This is the type
of global rule that is valued by educators, particularly because it is a more general
statement. Larissa had now developed an inference about what same speed means,
and her inference was not restricted to one particular problem. Thus, for each
student, her action/reflection cycles allowed them to make new inferences about
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the speed situation, produce a general global rule, and produce statements
connected to the transformational proof scheme, as discussed below.

Each of the three episodes shows different ways in which engaging in
action/reflection cycles of generalization can contribute to the development of more
sophisticated ideas. Although initial generalizations may have been limited or
incorrect, subsequent cycles built on previous attempts to develop more broad and
powerful generalizations. The episodes further demonstrate that the chain of
students’ generalizing does not occur haphazardly but instead in ways that allow
students to bootstrap their reasoning into more sophisticated structures.

Mechanism 2: Focus. As in Episode 2, Episode 3 demonstrates that the students
shifted their focus from number patterns to quantitative relationships. Before this
shift in focus, the girls’ reflection generalizations were identifications of general
principles and definitions of classes, and their proof schemes associated with
their attempts to justify remained at the external symbolic levels. After the shift,
we see that the students produced identifications of continuing phenomena and
justifications with the transformational proof scheme. Attending to the relation-
ship between centimeters and seconds also helped the students make new infer-
ences about the problem.

One of the catalysts for the shift in focus was again the need to explain why 5
cm in 4 s was the same speed as 15 cm in 12 s. Similar to Episode 2, the struggle
to provide an explanation pushed the students to appeal to quantities, because
appealing to patterns in the numbers produced justifications that the students
sensed were ineffective. As the students struggled to develop an explanation,
their focus changed, they produced different generalizations about new infer-
ences, and they ultimately developed more sophisticated arguments.

Episodes 2 and 3 both showed that the students’ shift in focus from number
patterns to quantitative relationships afforded different types of generalizing and
justifying. Once students focused their attention on the quantities, they began to
generalize about relationships between quantities. One might argue that this type
of evolution in students’ reasoning could occur even without a shift in focus.
However, this phenomenon did not occur at any time through the course of the
teaching experiment, suggesting that the shift in focus played an important role
in students’ evolution in reasoning.

Mechanism 3: Generalizations that promote deductive reasoning. The possible
generalizing actions of extending by operating and continuing, and the reflection
generalization of an identification of a continuing phenomenon, supported
Larissa’s explanation via the transformational proof scheme. By extending,
Larissa and Maria expanded the 5 cm:4 s ratio into a more general structure.
Furthermore, they engaged in anticipatory, goal-oriented acts. Maria and Larissa
knew that they wanted to determine a unit rate, and they were able to divide the
ratio appropriately to obtain that rate. The resulting statement of a continuing
phenomenon could also have supported Larissa’s transformational proof scheme,
because Larissa had shifted from thinking about multiples of 5:4 as producing
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same-speed values to thinking about iterating a 5 cm:4 s journey multiple times.
Thus, she focused on the dynamic relationship between quantities, and was able
to transform the image of Frog walking 5 cm in 4 s to Clown continuing his
journey to a total of 15 cm in 12 s.

Episodes 2 and 3 demonstrated three types of generalizing that promoted the
transformational proof scheme: the generalizing action of searching for relation-
ships, the generalizing action of extending, and the reflection generalization of an
identification of a continuing phenomenon. These were the three types tied to the
use of the transformational proof scheme through analysis of the entire teaching
experiment. The students’ actions suggested that searching for the same relation-
ship was not only connected with the use of the transformational proof scheme but
may also have promoted its use. By turning their attention to relationships, students
constructed new mathematical objects, such as ratios. Through repeated reasoning
with the construction of new mental objects as relationships between existing
objects, students honed their ability to operate on objects. In addition, as students
searched for the same relationship, they anticipated that a certain relationship would
remain stable throughout the data. Students’ searching actions were also goal
oriented, because they entered the search with the aim of developing a stable rela-
tionship. Therefore, the act of searching for a relationship incorporates many of
the attributes that constitute the transformational proof scheme—goal-oriented,
anticipatory operations on objects.

Similarly, the generalizing action of extending could promote the use of the trans-
formational proof scheme. Because extending requires a student to expand his or
her reasoning to incorporate nonpresent mathematical objects, he or she must both
construct the relationship or pattern to be extended and anticipate how it could be
extended. This could encourage students to operate on mathematical objects in a
goal-oriented manner, further promoting an evolution in both their generalizing
and justifying. 

Finally, producing a statement of a continuing phenomenon appeared to be
connected to the use of the transformational proof scheme precisely because it
involves a focus on a dynamic relationship between quantities and the identifica-
tion of a property that extends through time. In order to identify this property,
students often had to transform images in an anticipatory, goal-oriented nature.
Statements of continuing phenomena did not spontaneously appear for students.
Often it was the process of justifying that supported their development; this
phenomenon is discussed in more detail in Mechanism 4.

Mechanism 4: Influence of deductive reasoning on generalizing. Larissa
produced a justification with the transformational proof scheme. Then, when
pushed to further generalize, Larissa extended her reasoning by removing partic-
ulars and ultimately identified a global rule about same-speed values. Her act of
justifying, particularly in a way that employed both goal-oriented, anticipatory
actions and transformations of images, helped Larissa generalize further. Because
one of the requirements of the transformational proof scheme is that students appre-
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ciate the generality aspect of a conjecture, engaging in this type of justification
appears to afford further generalizing.

As discussed previously, two major types of reflection generalizations
appeared after students justified with the transformational proof scheme: iden-
tifications of general principles, such as algebraic or global rules, and identifi-
cations of continuing phenomena. These episodes illustrate that the relationship
between generalizing and justifying is not uni-directional. Students do not
produce a generalization, justify it, and then move on. Instead, the act of justi-
fying itself can push students’ reasoning forward in ways that encourage further
generalizing. When this act is connected to the transformational proof scheme,
students’ reasoning can progress in a manner that evolves toward increasingly
sophisticated generalizations.

Final Remarks on the Episodes

The three episodes, taken together, demonstrate how the students’ generalizing
and justifying activities acted in concert to afford an evolution in their reasoning.
The students began by relating the speed situation to the gears situation and by
generalizing about number patterns. They developed a generalization that multi-
ples of 5 cm:4 s would result in the same speed, but the students remained at the
symbolic and empirical inductive proof scheme levels as they struggled to produce
justifications. The teacher’s prompt for the students to explain why encouraged
a shift in focus from number patterns to quantities. This shift in focus prompted
students to begin generalizing differently; they made statements of continuing
phenomena and connected their generalizations to the quantitative relationships
in the situation. The students were able to justify their new generalizations with
the transformational proof scheme, which in turn encouraged the development of
more powerful general principles related to linearity. The episodes were chosen
as a coherent narrative showing all four mechanisms interacting to support
increasingly sophisticated generalizations and justifications. Although some
mechanisms may operate more effectively as stand-alone supports than others,
it is the interaction between the four mechanisms that constitute a support for
increased sophistication, rather than each mechanism occurring in isolation from
the others. 

DISCUSSION AND CONCLUSION

The four mechanisms for change are not hierarchical, but instead interact in
complex ways to support more powerful acts of generalizing and justifying over
time. These mechanisms emerged in part as a way to explain the phenomenon that
students’ generalizing and justifying were rarely distinct and separable acts.
Instead, each activity influenced the other in a cyclical manner as students’
reasoning evolved over time. The nature of this interaction between generalizing
and justifying highlights the developmental importance of students’ initial, limited
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general statements and proofs. Although correct algebraic generalizations and
deductive forms of proof remain a critical instructional goal, this study suggests
that students’ incorrect, nondeductive generalizations and proofs may serve as an
important bridge toward this goal. 

Given the growing emphasis on proof in the middle grades, understanding which
types of generalizing activities can support powerful justifications will be critical
in helping educators design more effective lessons. For the teaching experiment
participants, three types of generalizations were closely tied to reasoning with the
transformational proof scheme: (1) searching for relationships, (2) extending one’s
reasoning, and (3) producing statements of continuing phenomena. The inclusion
of problem situations that necessitate these actions may provide a fruitful setting
to encourage the development of deductive reasoning skills as students are encour-
aged to explain why their generalizations make sense. 

Results from the teaching experiment also address the role of justification as a
support for generalizing. Recent pedagogical recommendations encourage teachers
to present tasks in which algebra students find and generalize patterns (NCTM,
2000). However, as Lannin (2005) reminded us, “Developing algebraic under-
standing through patterning activities creates considerable difficulties as students
move from a focus on particular examples toward creating generalizations” (p. 232).
Furthermore, although these recommendations carry the assumption that general-
izing patterns will constitute sufficient support for producing appropriate justifi-
cations, research demonstrates the widespread phenomenon of students using
empirical justification to prove their generalizations (Hoyles, 1997; Knuth &
Elliott, 1998; Lannin, 2005). 

The fourth mechanism for change suggests that a more productive approach to
proof instruction may challenge the typical generalization/proof sequence. Students
in the study initially engaged in generalizing activities that were at times limited,
partially incorrect, or otherwise unproductive. However, as they attempted to
explain their generalizations and create increasingly deductive justifications,
students were able to revisit their generalizing actions, build on them, and ultimately
construct ones that were more powerful. The students’ engagement in increasingly
sophisticated generalization/justification cycles suggests that teachers might
consider incorporating justification early into the instructional sequence, rather than
expecting students to produce their final generalizations before moving on to proof.
The role of proof could therefore be viewed as a way to help students generalize
more effectively, rather than as an act that necessarily follows generalization. 

In order to facilitate early engagement with justification and proof, teachers
should consider emphasizing problems that allow for appropriate justification. In
the context of linear function, this would mean de-emphasizing situations in
which data are contrived or inexact, in favor of situations presenting linear data
that students can investigate, manipulate, and make sense of. Although approxi-
mate data can constitute a powerful problem situation, particularly in terms of high-
lighting the role of mathematical models for making sense of messy real-world
phenomena, these problems may be better reserved until after students have had
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opportunities to engage in the justifying acts that support the development of
powerful generalizations about linearity.

Another feature of the results emphasized the role that students’ mathematical
focus plays in influencing the nature of their generalizing, which in turn affected
the justifications they developed. This result suggests that problem situations that
encourage a focus on relationships between quantities instead of number patterns
or procedures alone could support the type of generalizing activity that encourages
the development of powerful justifications, and vice versa. Curricular materials
emphasizing quantitatively rich situations may provide a more fruitful setting to
encourage productive generalizing and justifying. Teachers also play an important
role in helping their students focus attention on quantities and the language of quan-
titative relationships. Although students often attend to number patterns alone, even
within the context of a quantitatively rich problem, teachers can intervene to draw
students’ attention back toward the quantitative referents. In addition, teachers can
incorporate the language of quantities into the classroom discussion by asking
students to shift from pattern descriptions to phenomenon descriptions. Because
students’ interactions with problem situations matter as much as the situations them-
selves, the teacher’s role is critical in choosing appropriate problems, shaping
classroom discourse, posing questions requiring a focus shift, introducing ideas that
emphasize relationships, and otherwise encouraging the type of focus shown to
promote more effective generalizing and justifying. 

The students in the study worked in a technology-based, small-group environ-
ment in which they were able to explore two quantitative situations in depth. Their
experiences differed from the typical classroom, which merits future work exam-
ining the applicability of these findings to a wider range of instructional settings.
Although a small-scale teaching experiment cannot, by its nature, produce widely
generalizable conclusions, it can offer an initial framework for examining the ways
in which generalizing and justifying mutually influence one another. The four
mechanisms of change provide a way for researchers to make sense of the evolu-
tion of students’ reasoning. They enable accounts of how generalizing and justi-
fying are related activities, how they mutually influence one another, and how they
can work together to support more sophisticated reasoning over time.
Methodologically, the use of Harel and Sowder’s (1998; Harel, 2006) proof scheme
taxonomy, in combination with Ellis’ (in press) generalization taxonomy, provides
a way to examine students’ mathematical generalizations and justifications in other
content domains. Both taxonomies can inform the researcher about the actions
students engage in as they generalize and prove, even if those actions are not ones
typically valued by educators or researchers. The mechanisms of change show that
students can, and do, move from less productive actions to more powerful gener-
alizing and justifying behaviors over time. Thus, the actions that may be consid-
ered unacceptable from an expert’s perspective could be the very ones that ultimately
support more appropriate outcomes. By better understanding what students see as
general and convincing, researchers and teachers can better help students move
toward more powerful acts of generalizing and justifying. 
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